ARTICLE

Seismic image enhancement by double-weighted stacking

PAN DENG1,2 QIUMING CIENG3 XIUFA CIEN4 JIANPING CIEN5 FANGYU LI6 LEI GUAN7
Show Less
1 International Mining Research Center, China Geological Survey, Beijing 100037, P.R. China. dpan@mail.cgs.gov.cn,
2 China Mining News, China Geological Survey, Beijing 100037, P.R. China.,
3 China University of Geosciences (Beijing), Beijing 100083, P.R. China.,
4 Development Research Center, China Geological Survey, Beijing 100037, P.R. China.,
5 Wuhan University, Wuhan 430079, P.R. China.,
6 Kennesaw State University, Marietta, GA 30060, U.S.A.,
7 CNODC, China National Petroleum Corporation (CNPC), Beijing 100034, P.R. China.,
JSE 2021, 30(1), 1–20;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Deng, P., Cheng, Q., Chen, X., Chen, J.P., Zhang, Y., Li, F.-Y. and Guan, L., 2021. Seismic image enhancement by double-weighted stacking. Journal of Seismic Exploration, 30: 1-20. Normal-moveout velocity analysis using semblance spectrum and common-midpoint stacking after normal-moveout correction are two indispensable procedures in seismic reflection data processing, especially for random noise attenuation, velocity model estimation, and imaging quality enhancement. During this process, weighting functions have been frequently used to improve the resolution of semblance and the performance of stacking. In this paper, the interactive relationship between semblance and _ stacking allows a new method of double-weighted stacking to be created. This method applies the same local-similarity-weighting function to the calculation of both semblance and stacking, aiming to enhance the final stacked image sections. The synthetic and field data numerical experiments have demonstrated that our new approach enhances the signal-to-noise ratio and the reflection-event continuity compared with conventional processing flows.

Keywords
semblance spectrum
normal-moveout correction
double-weighted stacking
local similarity
random noise attenuation
image quality enhancement.
References
  1. Bai, M., Chen, X., Wu, J., Liu, G., Chen, Y., Chen, H. and Li, Q., 2016. Q-
  2. _ rs migration by Gaussian beam summation method. J. Geophys. Engineer.,
  3. Bai, M. and Wu, J, 2017. Efficient deblending using median filtering without correct normal
  4. moveout-with comparison on migrated images. J. Seismic Explor., 26: 455-479.
  5. Chen, Y., Chen, H., Xiang, K. and Chen, X., 2016. Geological structure guided well
  6. log interpolation for high-fidelity full waveform inversion. Geophys. J. Internat.,
  7. 207: 1313-1331.
  8. Chen, G., Fu, L., Chen, K., Sun, W., Wei, W. and Guan, X., 2017a. Calculation of the
  9. scismic imaging complexity of complex geological structures. J. Seismic Explor., 26:
  10. Chen, Y., Chen, H., Xiang, K. and Chen, X., 2017b. Preserving the discontinuities in
  11. least-squares reverse time migration of simultaneous-source data. Geophysics,
  12. 82(3): S185-S196.
  13. Chen, Y., Liu, T. and Chen, X.,2015a. Velocity analysis using similarity-weighted semblance.
  14. Geophysics, 80(4): A75-A82.
  15. Chen, Y., Liu, T., Chen, X., Li, J. and Wang, E., 2014a. Time-frequency analysis of
  16. peau data using synchrosqueezing wavelet transform. J. Seismic Explor., 23: 303-
  17. Chen, Y., Yuan, J., Jin, Z., Chen, K.and Zhang, L.,2014b. Deblending using normal moveout
  18. and median filtering in common-midpoint gathers. J. Geophys. Engineer., 11:
  19. Chen, Y., Zhang, L. and Mo, L., 2015b. Seismic data interpolation using nonlinear shaping
  20. regularization. J. Seismic Explor., 24: 327-342.
  21. Claerbout, J.F., 2005. Basic Earth Imaging. Stanford Exploration Project.
  22. http://sepwww.stanford.edu/sep/prof/
  23. Deng, P., Chen, Y., Zhang, Y. and Zhou, H., 2016. Weighted stacking of seismic AVO
  24. data using hybrid ab semblance and local similarity. J. Geophys. Engineer., 13: 152-
  25. Donoho, D.L., 1995. De-noising by soft-thresholding. IEEE Transact. Informat. Theory,
  26. 41: 613-627.
  27. Ebrahimi, S., Kahoo, A., Chen, Y. and Porsani, M., 2017. A high-resolution weighted
  28. AB semblance’ for dealing with amplitude- ‘variation: with offset phenomenon.
  29. Geophysics, 82(2): V85-V93.
  30. Fomel, S., 2007. Local seismic attributes. Geophysics, 72(3): A29-A33.
  31. Li, Q. and Gao, J., 2014. Application of seismic data stacking in time-frequency domain.
  32. IEEE Geosci. Remote Sens. Lett., 11: 1484-1488.
  33. Li, Y., Li, Z., Zhang, K. and Lin, Y., 2016. Frequency-domain full waveform inversion
  34. with rugged free surface based on variable grid finite-difference method. J.
  35. Seismic Explor., 25: 543-559.
  36. Liu, G., Fomel, S. and Chen, X., 2011. Stacking angle-domain common-image gathers
  37. for normalization of illumination. Geophys. Prosp., 59: 244-255.
  38. Liu, G., Fomel, S., Jin, L. and Chen, X., 2009. Stacking seismic data using local
  39. correlation. Geophysics, 74(3): V43-V48.
  40. Luo, S. and Hale, D., 2012. Velocity analysis using weighted semblance. Geophysics,
  41. 77(2): U15-U22.
  42. Mayne, W.H., 1962. Common reflection point horizontal data stacking techniques.
  43. Geophysics, 27(6): 927-938.
  44. Neelamani, R., Dickens, T.A.and Deffenbaugh, M, 2006. Stack-and-denoise: A new method
  45. to stack seismic datasets. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New
  46. Orleans: 2827-2831.
  47. Neidell, N.S. and Taner, M.T., 1971. Semblance and other coherency measures for multi-
  48. channel data. Geophysics, 36(3): 482-497.
  49. Ren, C. and Tian, X., 2016. Prestack migration based on asymmetric wave-equation
  50. extrapolation. J. Seismic Explor., 25: 375-397.
  51. Sanchis, C. and Hanssen, A., 2011. Enhanced local correlation stacking method.
  52. Geophysics, 76(3): V33-V45.
  53. Trickett, S., 2007. Maximum-likelihood-estimation stacking. Expanded Abstr., 77th Ann.
  54. Internat. SEG Mtg., San Antonio: 2640-2643.
  55. Wilson, H. and Gross, L., 2017. Amplitude variation with offset-friendly bootstrapped
  56. differential semblance. Geophysics, 82 (5): V297-V309.
  57. Wu, J. and Bai, M., 2018a. Fast principal component analysis for stacking seismic data.
  58. J. Geophys. Engineer., 15: 305-306.
  59. Wu, J. and Bai, M., 2018b. Stacking seismic data based on principal component
  60. analysis. J. Seismic Explor., 27: 1-9.
  61. Wu, J., Wang, R., Chen, Y., Zhang, Y., Gan, S. and Zhou, C., 2016. Multiples
  62. attenuation using shaping regularization with seislet domain sparsity constraint. J.
  63. Seismic Explor., 25: 1-9.
  64. Xie, J., Chen, W., Zhang, D., Zu, S. and Chen, Y., 2017. Application of principal
  65. component analysis in weighted stacking of seismic data. IEEE Geosci. Remote
  66. Sens. Lett., 14: 1213-1217.
  67. Zhang, G., Tuo, X., Wang, K., Li, B. and Liu, M., 2014. Two-dimensional weighted
  68. stack determination using signal-to-noise ratios and probability statistics. Acta
  69. Geodaet. Geophys., 49: 431-440.
  70. Zhang, Q., Chen, Y., Guan, H.and Wen, J,2016. Well-log constrained inversion for lithology
  71. 和 acterization: acase study at the jz25-1 oil field, China. J. Seismic Explor., 25:121-
  72. Zhang, S., Xu, Y. and Xia, J., 2004. Higher-order correlative stacking for seismic
  73. data in the wavelet domain. Expanded Abstr., 74th Ann. Internat. SEG Mtg.,
  74. Denver: 1433-1436.
  75. Zhong, W., Chen, Y., Gan, S. and Yuan, J., 2016. L1/2 norm regularization for 3D
  76. seismic data interpolation. J. Seismic Explor., 25: 257-268.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing