Estimating fluid term and anisotropic parameters in saturated transversely isotropic media with aligned fractures

Pan, X.P., Zhang, G.Z., Liu, JX. and Ren, Z.Y., 2020. Estimating fluid term and anisotropic parameters in saturated transversely isotropic media with aligned fractures. Journal of Seismic Exploration, 30: 65-84. The Gassmann’s equation and general linear-slip model can be combined to characterize the effective elastic properties of a fluid-saturated transversely isotropic medium with aligned fractures. Such a medium represents a saturated fractured porous rock with orthorhombic symmetry. Combining the analysis of orthorhombic anisotropic poroelasticity, we first propose the derivation for the weak-anisotropy stiffnesses of a saturated fractured porous medium with orthorhombic symmetry in terms of the moduli of the background homogeneous isotropic rock, Thomsen-type anisotropy parameters, fracture weaknesses, and fluid modulus. Compared with the exact stiffness components, the approximated components of saturated fractured porous media with orthorhombic symmetry satisfy the actual demands in practical use. Using the approximately linearized expressions of the stiffness components of saturated orthorhombic model with the assumption of small Thomsen-type anisotropic parameters and small fracture parameters, we then derive a linearized PP-wave reflection coefficient in such an orthorhombic model, including a fluid term, a rigidity term, a density term, two Thomsen-type anisotropy terms, and three fracture-weakness terms. With a novel parameterization for Thomsen-type anisotropy parameters and fracture weaknesses, we derive an azimuthal elastic impedance equation with decoupled fluid term and anisotropic parameters. Synthetic and real data sets are used to illustrate the proposed approach in fluid saturated fractured porous rocks with orthorhombic symmetry, Sichuan Basin, China.
- Bachrach, R., Sengupta, M. and Salama, A., 2009. Reconstruction of the layer anisotropicelastic parameter and high resolution fracture characterization from P-wave data: acase study using seismic inversion and Bayesian rock physics parameter estimation.Geophys. Prosp., 57: 253-262.
- Bachrach, R., 2015. Uncertainty and nonuniqueness in linearized AVAZ fororthorhombic media. The Leading Edge, 34: 1048-1056.
- Bakulin, A., Grechka, V. and Tsvankin, I., 2000a. Estimation of fracture parameters fromreflection seismic data-Part II: Fractured models with orthorhombic symmetry.Geophysics, 65: 1803-1817.
- Bakulin, A., Grechka, V. and Tsvankin, I., 2000b. Estimation of fracture parameters fromreflection seismic data-Part II: Fractured models with monoclinic symmetry.Geophysics, 65: 1818-1830.
- Bakulin, A., Grechka, V. and Tsvankin, I., 2002. Seismic inversion for the parameters oftwo orthogonal fractures sets in a VTI background medium. Geophysics, 67:292-299.
- Chen, H., Pan, X., Ji, Y. and Zhang, G., 2017. Bayesian Markov Chain Monte Carloinversion for weak anisotropy parameters and fracture weaknesses using azimuthalelastic impedance. Geophys. J. Internat., 210: 801-818.
- Connolly, P., 1999. Elastic impedance. The Leading Edge, 18: 438-452.
- Downton, J.E. and Roure, B., 2015. Interpreting azimuthal Fourier coefficients foranisotropic and fracture parameters. Interpretation, 3: ST9-ST27.
- Far, M.E., Sayers, C.M., Thomsen, L., Han, D.H. and Castagna, J.P., 2013. Seismiccharacterization of naturally fractured reservoirs using amplitude versus offset andazimuth analysis. Geophys. Prosp., 61: 427-447.
- Gassmann, F., 1951. Uber die elastizitat poréser Medien: Ver. Natur. Gesellsch. Ziirich,96: 1-23.
- Golikov, P. and Stovas, A., 2010. New weak-contrast approximation for reflectioncoefficients in transversely isotropic media. J. Geophys. Engineer., 7: 343-350.
- Gurevich, B., 2003. Elastic properties of saturated porous rocks with aligned fractures.J. Appl. Geophys., 54. 203-218.
- Han, D.H. and Batzle, M.L., 2004. Gassmann’s equation and fluid-saturation effects onseismic velocities. Geophysics, 69: 398-405.
- Liu, E. and Martinez, A., 2012. Seismic Fracture Characterization. EAGE, Houten,Netherlands.
- Martins, J.L., 2006. Elastic impedance in weakly anisotropic media. Geophysics, 71:2092-2096.
- Huang, L., Stewart, R.R., Sil, S. and Dyaur, N., 2015. Fluid substitution effects onseismic anisotropy. J. Geophys. Res., Solid Earth, 120: 850-863.
- Ivanov, Y. and Stovas, A., 2017. Weak-anisotropy approximation for P-wave reflectioncoefficient at the boundary between two tilted transversely isotropic media. Geophys.Prosp., 65: 485-502.
- Pan, X., Zhang, G., Chen, H. and Yin, X., 2017a. McMC-based nonlinear EIVAZinversion driven by rock physics. J. Geophys. Engineer., 14: 368-379.
- Pan, X., Zhang, G. and Yin, X., 2017b. Azimuthally anisotropic elastic impedanceinversion for fluid indicator driven by rock physics. Geophysics, 82(6):C211-C227.
- Pan, X., Zhang, G. and Yin, X., 2018a. Azimuthal seismic amplitude variation with offsetand azimuth inversion in weakly anisotropic media with orthorhombic symmetry.Surv. Geophys., 39: 99-123.
- Pan, X. and Zhang, G., 2018b. Model parameterization and PP-wave Amplitude Versus
- Angle and Azimuth (AVAZ) direct inversion for fracture quasi-weaknesses inweakly anisotropic elastic media. Survey. Geophys., 39: 937-964.
- Pan, X., Zhang, G., Chen, H. and Yin, X., 2018c. Elastic impedance parameterization andinversion for fluid modulus and dry fracture quasi-weaknesses in a gas-saturatedreservoir. J. Natur. Gas Sci. Engineer., 49: 194-212.
- Pan, X. and Zhang, G., 2018d. Estimation of fluid indicator and dry fracture compliancesusing azimuthal seismic reflection data in a gas-saturated fractured reservoir. J.Petrol. Sci. Engineer., 167: 737-751.
- PSen¢ik, I. and Vavryéuk, V., 1998. Weak contrast PP wave R/T coefficients in weaklyanisotropic elastic media. Pure Appl. Geophys., 151: 699-718.
- Russel, B.H., Gray, D. and Hampson, D.P., 2011. Linearized AVO and poroelasticity.Geophysics, 76(3): C19-C29.
- Sayers, C.M., 1994. P-wave propagation in weakly anisotropic media. Geophys. J.Internat., 116: 799-805.
- Sayers, C., 1998. Misalignment of the orientation of fractures and the principal axes for
- P- and S-waves in rocks containing multiple non-orthogonal fracture sets. Geophys. J.Internat., 133: 459-466.
- Sayers, C.M., 2009. Seismic characterization of reservoirs containing multiple fracturesets. Geophys. Prosp., 57: 187-192.
- Schoenberg, M. and Protazio, J., 1990. ‘Zoeppritz’ rationalized and generalized toanisotropy. J. Acoust. Soc. Am., 88: S46.
- Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: Modeling elastic wavebehavior in a vertically fractured earth. Geophysics, 62: 1954-1957.
- Schoenberg, M. and Douma, J., 1998. Elastic wave propagation in media with parallelfractures and aligned cracks. Geophys. Prosp., 36: 571-590.
- Shaw, R.K. and Sen, M.K., 2004. Born integral, stationary phase and linearized reflectioncoefficients in weak anisotropic media. Geophys. J. Internat., 158: 225-238.
- Shaw, R.K. and Sen, M.K., 2006. Use of AVOA data to estimate fluid indicator in avertically fractured medium. Geophysics, 71(3): C15-C24.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media.Geophysics, 62: 1292-1309.
- Zong, Z. and Yin, X., 2016. Direct inversion of Young’s and Poisson impedances forfluid discrimination. Geofluids, 16: 1006-1016.