Elimination of multiples from marine seismic data using the primary-multiple intermediate velocities in the t-q domain

Abbasi, S. and Ismail, A., 2021. Elimination of multiples from marine seismic data using the primary-multiple intermediate velocities in the t-g domain. Journal of Seismic Exploration, 30: 85-100. Removing seismic multiples is one of the essential steps in seismic data processing and is often carried out using the Radon transform (intercept time (t) and curvature (q) domain). In this method, the normal moveout (NMO)-corrected CDP gathers using primary (signal) velocity are transformed into the t-q domain where multiples can be separated from primaries, based on their curvatures, and muted. A drawback of using the primary velocity for NMO correction is that primaries and multiples often exhibit similar curvature in the t-g domain, particularly at near offsets. We propose the use of velocity function intermediate between primaries and multiples for the NMO correction of the CDP gathers as input to t-q¢ domain to enhance primaries- multiples separation. The primary-multiple intermediate velocity approach is applied to synthetic and real short-streamer marine seismic data. A semblance-weighted Radon transform is used to reduce smearing in the radon space. The results showed more primary-multiple separation and better multiple removal.
- Abbasi, S. and Jaiswal, P., 2013. Attenuating long-period multiples in short-offset 2D
- streamer data: Gulf of California. Expanded Abstr., 83rd Ann. Internat. SEG
- Mtg., Houston.
- Alvarez, G., Biondi, B. and Guitton, A., 2004. Attenuation of diffracted multiples in
- angle domain common image gathers. Expanded Abstr., 74th Ann. Internat. SEG
- Mtg., Denver.
- Ursin, B., Abbad, B. and Porsani, M.J., 2009. Multiple attenuation with a modified
- parabolic Radon transform. Expanded Abstr., 79th Ann. Internat. SEG Mtg.,
- Houston: 1600-1604.
- Ellsworth, T.P., 1948. Multiple reflections. Geophysics, 13: 1-18.
- Foster, D.J. and Mosher, C.C., 1992. Suppression of multiple reflections using the Radon
- transform. Geophysics, 57: 386-395.
- Gholami, A. and Sacchi, M., 2017. Time-invariant Radon transform by generalized
- Fourier slice theorem. Inverse Probl. Imag., 11: 501-519.
- Hampson, D., 1986. Inverse velocity stacking for multiple elimination. Expanded Abstr.,
- 56th Ann. Internat. SEG Mtg., Houston.
- Thorson, J.R. and Claerbout, J.F.. 1985. Velocity-stack and slant-stack stochastic
- inversion. Geophysics, 50: 2727-2741.
- Kelamis, P., Chiburis, E. and Shahryar, S., 1990. Radon multiple elimination, a practical
- methodology for land data. Expanded Abstr., 60th Ann. Internat. SEG Mtg., San
- Francisco: 1611-1613.
- Keys, R.G. and Foster, D.J. (Eds), 1998. Comparison of Seismic Inversion Methods on a
- Single Real Data Set, #284A. SEG, Tulsa, OK.
- Luo, S. and Hale, D., 2012. Velocity analysis using weighted semblance. Geophysics,
- 77(2): U15-U22.
- Matson, K.H. and Abma, R., 2007. Method of Multiple Attenuation. Google Patents.
- Mayne, W.H., 1962. Common reflection point horizontal data stacking techniques.
- Geophysics, 27: 927-938.
- Moore, D.G., 1973. Plate-edge deformation and crustal growth, Gulf of California
- structural province. GSA Bull., 84: 1883-1906.
- Ng, M. and Bradshaw, A., 1987. Multiple attenuation by parabolic stack Radon
- transform: unpublished report. Geo-X Systems Ltd.
- Ng, M. and Perz, M., 2004. High resolution Radon transform in the t-x domain using
- “intelligent' prioritization of the Gauss-Seidel estimation sequence. Expanded
- Abstr., 74th Ann. Internat. SEG Mtg., Denver.
- O'doherty, R. and Anstey, N.A., 1971. Reflections on amplitudes. Geophys. Prosp., 19:
- 430-458.
- Peacock, K. and Treitel, S., 1969. Predictive deconvolution: Theory and practice.
- Geophysics, 34: 155-169.
- Reiter, E.C., Toks6z, M.N., Keho, T.H. and Purdy, G., 1991. Imaging with deep-water
- multiples. Geophysics, 56: 1081-1086.
- Russell, B., Hampson, D. and Chun, J., 1990. Noise elimination and the Radon transform,
- Part 2. The Leading Edge, 9(11): 31-37.
- Ryu, J.V., 1982. Decomposition (DECOM) approach applied to wave field analysis with
- seismic reflection records. Geophysics, 47: 869-883.
- Sacchi, M.D. and Porsani, M., 1999. Fast high resolution parabolic Radon transform.
- Expanded Abstr., 69th Ann. Internat. SEG Mtg., Houston: 1477-1480.
- Stoffa, P.L., Buhl, P., Diebold, J.B. and Wenzel, F., 1981. Direct mapping of seismic data
- to the domain of intercept time and ray parameter - A plane-wave decomposition.
- Geophysics, 46: 255-267.
- Taner, M., 1980. Long period sea-floor multiples and their suppression. Geophys.
- Prosp., 28: 30-48.
- Taner, M.T. and Koehler, F., 1969. Velocity spectra - Digital computer derivation
- applications of velocity functions. Geophysics, 34: 859-881.
- Tatham, R., Keeney, J. and Noponen, I., 1983. Application of the tau-p transform (slant-
- stack) in processing seismic reflection data. Explor. Geophys., 14: 163-172.
- Turner, G., 1990. Aliasing in the tau-p transform and the removal of spatially aliased
- coherent noise. Geophysics, 55: 1496-1503.
- Van Groenestijn, G. and Verschuur, D.J., 2009. Estimating primaries by sparse inversion
- and application to near-offset data reconstruction. Geophysics, 74(3): A23-A28.
- Verschuur, D.J., 2006. Seismic Multiple Removal Techniques - Past, Present and Future.
- EAGE, Houten, Netherlands.
- Verschuur, D.J., 2013. Seismic Multiple Removal Techniques - Past, Present and
- Future. EAGE, Houten, Netherlands.
- Weglein, A.B., Gasparotto, F.A., Carvalho, P.M. and Stolt, R.H., 1997. An inverse-
- scattering series method for attenuating multiples in seismic reflection data.
- Geophysics, 62: 1975-1989.
- Xiao, C., Bancroft, J.C., Brown, J. and Cao, Z., 2003. Multiple Suppression: A literature
- Review.
- Cao, Z. and Bancroft, J.C., 2006. Multiple attenuation using a high-resolution time-
- domain Radon transform.