Comparison of the fast sweeping and fast marching methods for first-arrival P-wave traveltime calculation in attenuating VTI media

Zhao, Z.C., Chen, J. and Wang, M.X., 2020. Comparison of the fast sweeping and fast marching methods for first-arrival P-wave traveltime calculation in attenuating VTI media. Journal of Seismic Eploration, 29: 403-424. First-arrival traveltime plays a crucial role in many geophysical applications such as static correction, tomography and prestack migration. Eikonal equation has been proven as an effective tool to calculate the first-arrival traveltime even in complex subsurface media. In attenuating media, eikonal equation can provide not only the information of first-arrival traveltime, but also amplitude decay. The real part of the complex-valued traveltime corresponds to seismic phase, while its imaginary part describes seismic attenuation due to energy absorption. Since the Fast Sweeping and Fast Marching methods have been considered as two effective eikonal equation solvers, it is necessary to compare them for the performances of calculating the complex-valued first- arrival P-wave traveltime in attenuating vertical transversely isotropic (VTI) media. The numerical tests show that the Fast Sweeping method is less time-consuming than the Fast Marching method, while having the same numerical accuracy.
- Alkhalifah, T. and Fomel, S., 2001. Implementing the fast marching eikonal solver:spherical versus Cartesian coordinates. Geophysical Prospecting, 49(2), 165-178.
- Alkhalifah. T.. 2000. An acoustic wave equation for anisotropic media. Geophysics, 65:1239-1250.
- Babuska, V. and Cara, M., 1991. Seismic anisotropy in the Earth (Vol. 10). SpringerScience & Business Media, Berlin.
- Bai, T. and Tsvankin, I., 2019. Source-independent waveform inversion for attenuationestimation in anisotropic media. Geophys. Prosp., 67: 2343-2357.
- Bai, T., Tsvankin, I. and Wu, X., 2017. Waveform inversion for attenuation estimation inanisotropic media. Geophysics, 82(4): WA83-WA93.
- Blackman, D.K., Kendall, J.M., Dawson, P.R., Wenk, H.R., Boyce, D. and Morgan, J.P.,
- Teleseismic imaging of subaxial flow at mid-ocean ridges: Traveltime effects_ Of anisotropic mineral texture in the mantle. Geophys. J. Internat., 127: 415-426.
- Cerveny, V. and PSencik, I., 2009. Perturbation Hamiltonians in heterogeneous_ anisotropic weakly dissipative media. Geophys. J. Internat., 178: 939-949.
- Cerveny, V., 2005. Seismic Ray Theory. Cambridge University Press, Cambridge.
- Chichinina, T., Sabinin, V. and Ronquillo-Jarillo, G., 2006. QVOA analysis: P-waveattenuation anisotropy for fracture characterization. Geophysics, 71(3): C37-C48.
- Cristiani, E., 2009. A fast marching method for Hamilton-Jacobi equations modelingmonotone front propagations. Journal of Scientific Computing, 39(2), 189-205.
- Fomel, S., Luo, S. and Zhao, H., 2009. Fast sweeping method for the factored eikonalequation. Journal of Computational Physics, 228(17), 6440-6455.
- Guo, P. and McMechan, G.A., 2017. Sensitivity of 3D 3C synthetic seismograms toanisotropic attenuation and velocity in reservoir models. Geophysics, 82(2), T79-T95.
- Hao, Q. and Alkhalifah, T., 2017a. An acoustic eikonal equation for attenuatingtransversely isotropic media with a vertical symmetry axis. Geophysics, 82(1): C9-C20.
- Hao, Q. and Alkhalifah, T., 2017b. An acoustic eikonal equation for attenuatingorthorhombic media. Geophysics, 82(4), WA67-WA81.
- Hao, Q. and = Alkhalifah, T., 2019. Viscoacoustic anisotropic waveequations. Geophysics, 84(6): C323-C337.
- Hao, Q., Waheed, U. and Alkhalifah, T., 2018. A Fast Sweeping Scheme for P-wave
- Traveltimes in Attenuating VTI Media. Extended Abstr., 80th EAGE Conf.,Copenhagen.
- Kendall, J.M., 1994. Teleseismic arrivals at a mid-ocean ridge: Effects of mantle meltand anisotropy. Geophys. Res. Lett., 21: 301-304.
- Konukoglu, E., Sermesant, M., Clatz, O., Peyrat, J.M., Delingette, H. and Ayache, N.,
- A recursive anisotropic fast marching approach to reaction diffusion equation:
- Application to tumor growth modeling. In: Biennial Internat. Conf. Informat. Process.
- Medic. Imag. (687-699). Springer Verlag, Berlin, Heidelberg.
- Lan, H. and Zhang, Z., 2013. Topography-dependent eikonal equation and its solver forcalculating first-arrival traveltimes with an irregular surface. Geophys. J.Internat., 193: 1010-1026.
- Lan, H., Zhang, Z., Xu, T., Bai, Z. and Liang, K., 2012. A comparative study on the fastmarching and fast sweeping methods in the calculation of first-arrival traveltimefield. Progr. Geophys. (in Chinese), 27: 1863-1870.
- Luo, S. and Oian. J.. 2012. Fast sweeving methods for factored anisotropic eikonalequations: multiplicative and additive factors. J. Sci. Comput., 52: 360-382.
- Popovici, A.M. and Sethian, J.A., 2002. 3-D imaging using higher order fast marchingtraveltimes. Geophysics, 67: 604-609.
- Qian, J., Zhang, Y. and Zhao, H., 2007. A fast sweeping method for static convex
- Hamilton—Jacobi equations. J. Sci. Comput., 31: 237-271.
- Qin, F., Luo, Y., Olsen, K.B., Cai, W. and Schuster, G.T., 1992. Finite-differencesolution of the eikonal equation along expanding wavefronts. Geophysics, 57: 478-
- Qin, F., Luo, Y., Olsen, K.B., Cai, W. and Schuster, G.T., 1992. Finite-differencesolution of the eikonal equation along expanding wavefronts. Geophysics, 57: 378-
- Schoenberg, M. and Sayers, C.M. 1995. Seismic anisotropy of fracturedrock. Geophysics, 60: 204-211.
- Sethian, J.A. and Vladimirsky, A., 2003. Ordered upwind methods for static Hamilton-
- Jacobi equations: Theory and algorithms. SIAM J. Numer. Analys, 41: 325-363.
- Sethian, J.A., 1996. A fast marching level set method for monotonically advancingfronts. Proc. Nat. Acad. Sci., 93: 1591-1595.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Tsvankin, I., 2012, Seismic Signatures and Analysis of Reflection Data in AnisotropicMedia, 3rd ed. SEG, Tulsa, OK.
- Tsvankin, I. and Grechka, V., 2011. Seismology of azimuthally anisotropic mediaand seismic fracture characterization. Society of Exploration Geophysicists.
- Vavrytuk, V., 2007. Ray velocity and ray attenuation in homogeneous anisotropicviscoelastic media. Geophysics, 72(6), D119-D127.
- Vavryéuk, V., 2010. Behaviour of rays at interfaces in anisotropic viscoelasticmedia. Geophys. J. Internat., 181: 1665-1677.
- Vidale, J., 1988. Finite-difference calculation of travel times. Bull. Seismol. Soc. Am., 78:2062-2076.
- Waheed, U.B. and Alkhalifah, T., 2017. A fast sweeping algorithm for accurate solutionof the tilted transversely isotropic eikonal equation usingfactorization. Geophysics, 82(6): WB1-WB8.
- Waheed, U.B., Yarman, C.E. and Flagg, G., 2015. An iterative, fast-sweeping-basedeikonal solver for 3D tilted anisotropic media. Geophysics, 80(3): C49-C58.
- Xu, T., Xu, G., Gao, E., Li, Y., Jiang, X. and Luo, K., 2006. Block modeling andsegmentally iterative ray tracing in complex 3D media. Geophysics, 71(3): T41-T51.
- Zhao, H., 2005. A fast sweeping method for eikonal equations. Mathemat. Computat., 74:603-627.
- Zhu, Y. and Tsvankin, I., 2006. Plane-wave propagation in attenuative transverselyisotropic media. Geophysics, 71(2): T17-T30.