ARTICLE

Comparison of the fast sweeping and fast marching methods for first-arrival P-wave traveltime calculation in attenuating VTI media

ZHENCONG ZHAO JINGYI CHEN* MENGXIU WANG
Show Less
Seismic Anisotropy Group, Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, U.S.A.,
JSE 2020, 29(5), 403–424;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhao, Z.C., Chen, J. and Wang, M.X., 2020. Comparison of the fast sweeping and fast marching methods for first-arrival P-wave traveltime calculation in attenuating VTI media. Journal of Seismic Eploration, 29: 403-424. First-arrival traveltime plays a crucial role in many geophysical applications such as static correction, tomography and prestack migration. Eikonal equation has been proven as an effective tool to calculate the first-arrival traveltime even in complex subsurface media. In attenuating media, eikonal equation can provide not only the information of first-arrival traveltime, but also amplitude decay. The real part of the complex-valued traveltime corresponds to seismic phase, while its imaginary part describes seismic attenuation due to energy absorption. Since the Fast Sweeping and Fast Marching methods have been considered as two effective eikonal equation solvers, it is necessary to compare them for the performances of calculating the complex-valued first- arrival P-wave traveltime in attenuating vertical transversely isotropic (VTI) media. The numerical tests show that the Fast Sweeping method is less time-consuming than the Fast Marching method, while having the same numerical accuracy.

Keywords
eikonal equation
attenuation
transverse isotropic
Fast Sweeping method
Fast Marching method
References
  1. Alkhalifah, T. and Fomel, S., 2001. Implementing the fast marching eikonal solver:
  2. spherical versus Cartesian coordinates. Geophysical Prospecting, 49(2), 165-178.
  3. Alkhalifah. T.. 2000. An acoustic wave equation for anisotropic media. Geophysics, 65:
  4. 1239-1250.
  5. Babuska, V. and Cara, M., 1991. Seismic anisotropy in the Earth (Vol. 10). Springer
  6. Science & Business Media, Berlin.
  7. Bai, T. and Tsvankin, I., 2019. Source-independent waveform inversion for attenuation
  8. estimation in anisotropic media. Geophys. Prosp., 67: 2343-2357.
  9. Bai, T., Tsvankin, I. and Wu, X., 2017. Waveform inversion for attenuation estimation in
  10. anisotropic media. Geophysics, 82(4): WA83-WA93.
  11. Blackman, D.K., Kendall, J.M., Dawson, P.R., Wenk, H.R., Boyce, D. and Morgan, J.P.,
  12. Teleseismic imaging of subaxial flow at mid-ocean ridges: Traveltime effects
  13. _ Of anisotropic mineral texture in the mantle. Geophys. J. Internat., 127: 415-426.
  14. Cerveny, V. and PSencik, I., 2009. Perturbation Hamiltonians in heterogeneous
  15. _ anisotropic weakly dissipative media. Geophys. J. Internat., 178: 939-949.
  16. Cerveny, V., 2005. Seismic Ray Theory. Cambridge University Press, Cambridge.
  17. Chichinina, T., Sabinin, V. and Ronquillo-Jarillo, G., 2006. QVOA analysis: P-wave
  18. attenuation anisotropy for fracture characterization. Geophysics, 71(3): C37-C48.
  19. Cristiani, E., 2009. A fast marching method for Hamilton-Jacobi equations modeling
  20. monotone front propagations. Journal of Scientific Computing, 39(2), 189-205.
  21. Fomel, S., Luo, S. and Zhao, H., 2009. Fast sweeping method for the factored eikonal
  22. equation. Journal of Computational Physics, 228(17), 6440-6455.
  23. Guo, P. and McMechan, G.A., 2017. Sensitivity of 3D 3C synthetic seismograms to
  24. anisotropic attenuation and velocity in reservoir models. Geophysics, 82(2), T79-T95.
  25. Hao, Q. and Alkhalifah, T., 2017a. An acoustic eikonal equation for attenuating
  26. transversely isotropic media with a vertical symmetry axis. Geophysics, 82(1): C9-
  27. C20.
  28. Hao, Q. and Alkhalifah, T., 2017b. An acoustic eikonal equation for attenuating
  29. orthorhombic media. Geophysics, 82(4), WA67-WA81.
  30. Hao, Q. and = Alkhalifah, T., 2019. Viscoacoustic anisotropic wave
  31. equations. Geophysics, 84(6): C323-C337.
  32. Hao, Q., Waheed, U. and Alkhalifah, T., 2018. A Fast Sweeping Scheme for P-wave
  33. Traveltimes in Attenuating VTI Media. Extended Abstr., 80th EAGE Conf.,
  34. Copenhagen.
  35. Kendall, J.M., 1994. Teleseismic arrivals at a mid-ocean ridge: Effects of mantle melt
  36. and anisotropy. Geophys. Res. Lett., 21: 301-304.
  37. Konukoglu, E., Sermesant, M., Clatz, O., Peyrat, J.M., Delingette, H. and Ayache, N.,
  38. A recursive anisotropic fast marching approach to reaction diffusion equation:
  39. Application to tumor growth modeling. In: Biennial Internat. Conf. Informat. Process.
  40. Medic. Imag. (687-699). Springer Verlag, Berlin, Heidelberg.
  41. Lan, H. and Zhang, Z., 2013. Topography-dependent eikonal equation and its solver for
  42. calculating first-arrival traveltimes with an irregular surface. Geophys. J.
  43. Internat., 193: 1010-1026.
  44. Lan, H., Zhang, Z., Xu, T., Bai, Z. and Liang, K., 2012. A comparative study on the fast
  45. marching and fast sweeping methods in the calculation of first-arrival traveltime
  46. field. Progr. Geophys. (in Chinese), 27: 1863-1870.
  47. Luo, S. and Oian. J.. 2012. Fast sweeving methods for factored anisotropic eikonal
  48. equations: multiplicative and additive factors. J. Sci. Comput., 52: 360-382.
  49. Popovici, A.M. and Sethian, J.A., 2002. 3-D imaging using higher order fast marching
  50. traveltimes. Geophysics, 67: 604-609.
  51. Qian, J., Zhang, Y. and Zhao, H., 2007. A fast sweeping method for static convex
  52. Hamilton—Jacobi equations. J. Sci. Comput., 31: 237-271.
  53. Qin, F., Luo, Y., Olsen, K.B., Cai, W. and Schuster, G.T., 1992. Finite-difference
  54. solution of the eikonal equation along expanding wavefronts. Geophysics, 57: 478-
  55. Qin, F., Luo, Y., Olsen, K.B., Cai, W. and Schuster, G.T., 1992. Finite-difference
  56. solution of the eikonal equation along expanding wavefronts. Geophysics, 57: 378-
  57. Schoenberg, M. and Sayers, C.M. 1995. Seismic anisotropy of fractured
  58. rock. Geophysics, 60: 204-211.
  59. Sethian, J.A. and Vladimirsky, A., 2003. Ordered upwind methods for static Hamilton-
  60. Jacobi equations: Theory and algorithms. SIAM J. Numer. Analys, 41: 325-363.
  61. Sethian, J.A., 1996. A fast marching level set method for monotonically advancing
  62. fronts. Proc. Nat. Acad. Sci., 93: 1591-1595.
  63. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  64. Tsvankin, I., 2012, Seismic Signatures and Analysis of Reflection Data in Anisotropic
  65. Media, 3rd ed. SEG, Tulsa, OK.
  66. Tsvankin, I. and Grechka, V., 2011. Seismology of azimuthally anisotropic media
  67. and seismic fracture characterization. Society of Exploration Geophysicists.
  68. Vavrytuk, V., 2007. Ray velocity and ray attenuation in homogeneous anisotropic
  69. viscoelastic media. Geophysics, 72(6), D119-D127.
  70. Vavryéuk, V., 2010. Behaviour of rays at interfaces in anisotropic viscoelastic
  71. media. Geophys. J. Internat., 181: 1665-1677.
  72. Vidale, J., 1988. Finite-difference calculation of travel times. Bull. Seismol. Soc. Am., 78:
  73. 2062-2076.
  74. Waheed, U.B. and Alkhalifah, T., 2017. A fast sweeping algorithm for accurate solution
  75. of the tilted transversely isotropic eikonal equation using
  76. factorization. Geophysics, 82(6): WB1-WB8.
  77. Waheed, U.B., Yarman, C.E. and Flagg, G., 2015. An iterative, fast-sweeping-based
  78. eikonal solver for 3D tilted anisotropic media. Geophysics, 80(3): C49-C58.
  79. Xu, T., Xu, G., Gao, E., Li, Y., Jiang, X. and Luo, K., 2006. Block modeling and
  80. segmentally iterative ray tracing in complex 3D media. Geophysics, 71(3): T41-T51.
  81. Zhao, H., 2005. A fast sweeping method for eikonal equations. Mathemat. Computat., 74:
  82. 603-627.
  83. Zhu, Y. and Tsvankin, I., 2006. Plane-wave propagation in attenuative transversely
  84. isotropic media. Geophysics, 71(2): T17-T30.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing