ARTICLE

An effective method to suppress numerical dispersion in 3D elastic modeling using a high-order Padé approximation

YANJIE ZHOU1 XUEYUAN HUANG1 XIJUN HE1 YONGCHANG ZHENG2
Show Less
1 Department of Mathematics, School of Mathematics and Statistics, Beijing Technology and Business University (BTBU), Beijing 100048, P.R. China.,
2 Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,
JSE 2020, 29(5), 425–454;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhou, Y.J., Huang, X.Y., He, X.J. and Zheng, Y.C., 2020. An effective method to suppress numerical dispersion in 3D elastic modeling using a high-order Padé approximation. Journal of Seismic Exploration, 29: 425-454. We proposed a numerical method for solving seismic wave equations called the fourth-order Padé approximation method (PAM). This work was an extension of the 2D PAM to the 3D case. We used the PAM for time discretization to obtain an implicit scheme, in which the time difference operator has a rational function form. To avoid solving large linear systems with a block tridiagonal coefficient matrix, we proposed an algorithm to transform the implicit scheme into an explicit method. For the spatial discretization, we adapted the nearly analytic discrete (NAD) operator, which uses a linear combination of wavefield displacements and their gradients to discretize higher-order spatial derivatives. In addition, for the fourth- and fifth-order mixed partial differential terms, we used operator splitting to reduce the order of the differential operators in the scheme and decrease the calculation time. The proposed scheme had higher precision with eighth-order accuracy in space, lower dispersion, and higher computational efficiency than the other Padé approximation-based approaches, which were fourth-order compact finite difference schemes that required solving a large tridiagonal system at each time step. The stability condition, relative error, and dispersion relation of the 3D PAM were analyzed. Comparisons of the theoretical and numerical results of the proposed method, the 3D Lax-Wendroff correction (LWC) method, and the staggered grid (SG) finite difference method demonstrated the superiority of the PAM for solving 3D seismic wave equations and its advantages of lower dispersion and higher computational efficiency. The results indicated that the 3D high-order PAM was an efficient and accurate forward modeling tool for solving large-scale wave propagation problems related to reverse time migration or full-waveform inversion.

Keywords
Padé approximation
forward method
wavefield modeling
numerical dispersion
References
  1. Alterman, Z. and Karal, F.C., 1968. Propagation of seismic wave in layered media by
  2. finite difference method. Bull. Seismol. Soc. Am., 58: 367-398.
  3. Abdulkadir, Y.A.. 2015. Comparison of finite difference schemes for the wave equation
  4. based on dispersion. J. Appl. Mathemat. Phys., 3: 1544-1562.
  5. Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W.H.
  6. Freeman & Co., San Francisco.
  7. Alterman, Z. and Karal F.C.. 1968. Propagation of seismic wave in layered media by
  8. finite difference method. Bull. Seismol. Soc. Am., 58: 367-398.
  9. Bansal, R. and Sen, M.K., 2008. Finite-difference modelling of s-wave splitting in
  10. anisotropic media. Geophys. Prosp., 56: 293-312.
  11. Blanch, J.O. and Robertsson, J.O.A., 2010. A modified Lax-Wendroff correction for
  12. wave propagation in media described by Zener elements. Geophys. J. Roy. Astronom.
  13. Soc., 131: 381-386.
  14. Booth. D.C. and Crampin. S.. 2010a. The anisotropic reflectivity technique: theory.
  15. Geophys. J. Roy. Astronom. Soc., 72: 755-766.
  16. Booth, D.C. and Crampin, S., 2010b. The anisotropic reflectivity technique: anomalous
  17. reflected arrivals from an anisotropic upper mantle. Geophys. J. Internat. 72:
  18. 767-782.
  19. Bouchon, M., 1996. The discrete wave number formulation of boundary integral
  20. equations and boundary element methods: a review with applications to the
  21. simulation of seismic wave propagation in complex geological structures. Pure Appl.
  22. Geophys., 148: 3-20.
  23. Carcione, J.M. and Helle, H.B.. 1999. Numerical solution of the poroviscoelastic wave
  24. equationon a staggered mesh. J. Computat. Phys., 154: 520-527.
  25. Carcione, J.M., 2014. Wave Fields in Real Media. Theory and numerical simulation of
  26. wave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rd
  27. ed. Elsevier Science Publishers, Amsterdam.
  28. Carcione. J.M.. Dan. K.. Behle. A. and Seriani. G.. 1992. A spectral scheme for wave
  29. propagation simulation in 3-D elastic-anisotropic media. Geophysics. 57: 1593-1607.
  30. Carcione, J.M.. Herman, G.C. and ten Kroode, A.P.E., 2002. Seismic modeling.
  31. Geophysics. 67: 1304-1325.
  32. Chen, X., 1993. A systematic and efficient method of computing normal modes for
  33. multilayered half-space. Geophys. J. Internat., 115: 391-409.
  34. Dablain, M.A.. 1986. The application of high-order differencing to the scalar wave
  35. equation. Geophysics, 51: 54-66.
  36. Das, S., Liao, W. and Gupta, A., 2014. An efficient fourth-order low dispersive finite
  37. difference scheme for a 2-D acoustic wave equation. J. Computat. Appl. Mathemat.,
  38. 258(3): 151-167.
  39. De Hoon, A.T., 1960. A modification of Cagniard’s method for solving seismic pulse
  40. problems. Appl. Sci. Res., Sect. B.8: 349-356.
  41. Faria, E.L. and Stoffa, P.L.. 1994. Finite-difference modeling in transversely isotropic
  42. media. Geophysics, 59: 282-289.
  43. Fei, T. and Larner. K.. 1995. Elimination of numerical dispersion in finite-difference
  44. modeling and migration by flux-corrected transport. Geophysics, 60: 1830-1842.
  45. Graves. R.W.. 1996. Simulating seismic wave propagation in 3D elastic media using
  46. staggered-grid finite differences. Bull. Seismol. Soc. Am., 86: 1091-1106.
  47. Guan, Z. and Lu, J.F. 2006. Numerical Methods. Tsinghua University Press, Beijing.
  48. He, X.J., Yang, D.H. and Wu, H., 2014. Numerical dispersion and wave-field simulation
  49. of the Runge-Kutta discontinuous Galerkin method. Chin. J. Geophys. — Chin. Ed.,
  50. 57: 906-917.
  51. He, X.. Yang, D. and Wu, H., 2015. A weighted Runge-Kutta discontinuous Galerkin
  52. method for wave field modelling. Expanded Abstr., 85th Ann. Internat. SEG Mtg.,
  53. New Orleans: 3349-3354.
  54. Huang, X., Yang, D., Tong, P. and Zhou, Y., 2016. 3D nearly analytic central difference
  55. method for computation of sensitivity kernels of wave-equation-based seismic
  56. tomography. Bull. Seismol. Soc. Am., 106: 2877-2899.
  57. Huang, X. and Sloan, D.M., 1992. The pseudospectral method for third-order differential
  58. equations. SIAM J. Numer. Analys., 29: 1626-1647.
  59. Johnson, E.C., 1991. Adaptive finite element methods for parabolic problems, I: A linear
  60. model problem. SIAM J. Numer. Analys., 28: 43-77.
  61. Kaser, M. and Dumbser, M., 2006. An arbitrary high-order discontinuous Galerkin
  62. method for elastic waves on unstructured meshes - I. The two-dimensional isotropic
  63. case with external source terms. Geophys. J. Internat., 166: 855-877.
  64. Komatitsch, D. and Vilotte, J.P., 1998. The spectral element method: an efficient tool to
  65. simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc.
  66. Am., 88: 368-392.
  67. Kondoh, Y., Hosaka, Y. and Ishii, K., 1994. Kernel optimum nearly-analytical
  68. discretization (KOND) algorithm applied to parabolic and hyperbolic equations.
  69. Comput. Mathemat. Applicat., 27(3): 59-90.
  70. Kosloff, D.. 1984. Elastic wave calculation by the Fourier method. Bull. Seismol. Soc.
  71. Am., 74: 875-891.
  72. Kosloff. D. . Pestana, R.C. and Tal-Ezer, H.. 2010. Acoustic and elastic numerical wave
  73. simulations by recursive spatial derivative operators. Geophysics, 75(6): T167-T174.
  74. Ma, X., Yang, D. and Liu, F., 2011. A nearly analytic symplectically partitioned
  75. Runge-Kutta method for 2-D seismic wave equations. Geophys. J. Internat., 187:
  76. 480-496.
  77. Ma, X., Yang, D., Song, G. and Wang, M., 2014. A low-dispersive symplectic
  78. partitioned Runge-Kutta method for solving seismic-wave equations, I: Scheme and
  79. theoretical analysis. Bull. Seismol. Soc. Am., 104: 2206-2225.
  80. Ma, X., Yang, D. and Song, G., 2015. A low-dispersive symplectic partitioned
  81. runge-kutta method for solving seismic-wave equations, II: Wavefield
  82. simulations. Bull. Seismol. Soc. Am., 105: 657-675.
  83. Moczo, P.. Kristek, J. and Halada, L.. 2000. 3D fourth-order staggered-grid
  84. finite-difference schemes: stability and grid dispersion. Bull. Seismol. Soc. Am., 90:
  85. 587-603.
  86. Moczo, P., Kristek, J.. Wavrvéuk, V.. Archuleta, R.J. and Halada, L.. 2002. 3D
  87. heterogeneous staggered-grid finite-difference modeling of seismic motion with
  88. volume harmonic and arithmetic averaging of elastic moduli and densities. Bull.
  89. Seismol. Soc. Am., 92: 3042-3066.
  90. Zhang, Q.H., Liao, C., Sheng, N. and Chen, L.L., 2015. Study of Padé two-way
  91. parabolic equation and application in indoor radio wave propagation problems. Acta
  92. Electron. Sin., 8: 30.
  93. Richtmyer, R.D. and Morton K.W., 1968. Difference methods for initial-value problems.
  94. Mathemat. Comput., 22: 465.
  95. Salcedo, M. , Novais, A., Schleicher, J. and Costa, J.C., 2017.. Optimization of the
  96. parameters in complex Padé Fourier finite-difference migration. Geophysics, 82(3):
  97. $259-S269.
  98. Sei, A. and Symes, W.W.. 1995. Dispersion analysis of numerical wave propagation and
  99. its computational consequences. J. Sci. Comput., 10: 1-27.
  100. Seriani, G., 1992. High-order spectral element method for elastic wave modeling.
  101. Expanded Abstr. 62nd Ann. Internat. SEG Mtg., New Orleans: 1285-1288.
  102. Sidler, R. and Carcione, J.M., 2007. Wave reflection at an anelastic transversely isotropic
  103. ocean bottom. Geophysics.72(5): SM139-SM146.
  104. Song, G.J.. Yang, D.H., Tong, P., and Lian, Y.S.. 2012. Parallel WNAD algorithm for
  105. solving 3D elastic equation and its wavefield simulations in TI media. Chin. J.
  106. Geophys. 55: 547-559.
  107. Takeuchi, N. and Geller, R.J.. 2000. Optimally accurate second order time-domain finite
  108. difference scheme for computing synthetic seismograms in 2-D and 3-D media. Phys.
  109. Earth Planet. Inter., 119: 99-131.
  110. Tong, P.. Yang, D., Hua, B. and Wang, M.. 2013. A high-order stereo-modeling method
  111. for solving wave equations. Bull. Seismol. Soc. Am., 103: 811-833.
  112. Vichnevetsky, R., 1979. Stability charts in the numerical approximation of partial
  113. differential equations: a review. Mathemat. Comput. Simulat., 21: 170-177.
  114. Virieux, J... 1984. Wave propagation in heterogeneous media: velocity-stress
  115. finite-difference method. Geophysics, 49: 1933-1957.
  116. Virieux. J... 1986. P-SV wave propagation in heterogeneous media: velocity-stress
  117. finite-difference method. Geophysics. 51: 889-901.
  118. Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: a
  119. predictor-corrector method of the implicit Runge-Kutta scheme. J. Seismic Explor.,
  120. 23: 431-462.
  121. Yang, D.H., Wang, N. and Liu, E., 2012. A_ strong stability-preserving
  122. predictor-corrector method for the simulation of elastic wave propagation in
  123. anisotropic media. Communic. Computat. Phys., 12: 1006-1032.
  124. Yang, L. and Sen, M.K., 2010.. Finite-difference modeling with adaptive variable-length
  125. spatial operators. Geophysics, 76(4): T79-T89.
  126. Yang, D.H., 2002. Finite element method of the elastic wave equation and wave-fields
  127. simulation in two-phase anisotropic media. Chin. J. Geophys., 45: 600-610.
  128. Yang, D.H., Liu, E., Zhang, Z.J. and Teng, J., 2002. Finite-difference modelling in
  129. two-dimensional anisotropic media using a flux-corrected transport technique.
  130. Geophys. J. Internat., 148: 320-328.
  131. Yang, D. and Wang, L., 2010. A split-step algorithm for effectively suppressing the
  132. numerical dispersion for 3D seismic propagation modeling. Bull. Seismol. Soc. Am.,
  133. 4: 1470-1484.
  134. Yang, D., He, X.. Ma, X., Zhou, Y. and Li, J.. 2016. An optimal nearly analytic
  135. discrete-weighted runge-kutta discontinuous galerkin hybrid method for acoustic
  136. wavefield modeling. Geophysics, 81(5): T251-T263.
  137. Yang, D., Song, G. and Lu, M., 2007. Optimally accurate nearly analytic discrete scheme
  138. for wave-field simulation in 3D anisotropic media. (5), 1557-1569.
  139. Yang, D., Teng, J.. Zhang, Z. and Liu, E., 2003. A nearly analytic discrete method for
  140. acoustic and elastic wave equations in anisotropic media . Bull. Seismol. Soc. Am.,
  141. 93: 882-890.
  142. Yang, D., Wang, L. and Deng, X., 2010. An explicit split - step algorithm of the implicit
  143. adams method for solving 2-D acoustic and elastic wave equations. Geophys. J.
  144. Internat., 180: 291-310.
  145. Yang, D.. Wang, M. and Ma, X. (2014). Symplectic stereomodelling method for solving
  146. elastic wave equations in porous media. Geophys. J. Internat., 196: 560-579.
  147. Zhou, H. and Chen, X., 2008. The localized boundary integral equation-discrete
  148. wavenumber method for simulating P-SV wave scattering by an irregular
  149. topography. Bull. Seismol. Soc. Am., 98: 265-279.
  150. Zhou, Y., Yang, D., Ma, X. and Li, J.. 2015. An effective method to suppress numerical
  151. dispersion in 2D acoustic and elastic modelling using a high-order Padé
  152. approximation. J. Geophys. Engineer., 12: 114-129.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing