An effective method to suppress numerical dispersion in 3D elastic modeling using a high-order Padé approximation

Zhou, Y.J., Huang, X.Y., He, X.J. and Zheng, Y.C., 2020. An effective method to suppress numerical dispersion in 3D elastic modeling using a high-order Padé approximation. Journal of Seismic Exploration, 29: 425-454. We proposed a numerical method for solving seismic wave equations called the fourth-order Padé approximation method (PAM). This work was an extension of the 2D PAM to the 3D case. We used the PAM for time discretization to obtain an implicit scheme, in which the time difference operator has a rational function form. To avoid solving large linear systems with a block tridiagonal coefficient matrix, we proposed an algorithm to transform the implicit scheme into an explicit method. For the spatial discretization, we adapted the nearly analytic discrete (NAD) operator, which uses a linear combination of wavefield displacements and their gradients to discretize higher-order spatial derivatives. In addition, for the fourth- and fifth-order mixed partial differential terms, we used operator splitting to reduce the order of the differential operators in the scheme and decrease the calculation time. The proposed scheme had higher precision with eighth-order accuracy in space, lower dispersion, and higher computational efficiency than the other Padé approximation-based approaches, which were fourth-order compact finite difference schemes that required solving a large tridiagonal system at each time step. The stability condition, relative error, and dispersion relation of the 3D PAM were analyzed. Comparisons of the theoretical and numerical results of the proposed method, the 3D Lax-Wendroff correction (LWC) method, and the staggered grid (SG) finite difference method demonstrated the superiority of the PAM for solving 3D seismic wave equations and its advantages of lower dispersion and higher computational efficiency. The results indicated that the 3D high-order PAM was an efficient and accurate forward modeling tool for solving large-scale wave propagation problems related to reverse time migration or full-waveform inversion.
- Alterman, Z. and Karal, F.C., 1968. Propagation of seismic wave in layered media byfinite difference method. Bull. Seismol. Soc. Am., 58: 367-398.
- Abdulkadir, Y.A.. 2015. Comparison of finite difference schemes for the wave equationbased on dispersion. J. Appl. Mathemat. Phys., 3: 1544-1562.
- Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W.H.Freeman & Co., San Francisco.
- Alterman, Z. and Karal F.C.. 1968. Propagation of seismic wave in layered media byfinite difference method. Bull. Seismol. Soc. Am., 58: 367-398.
- Bansal, R. and Sen, M.K., 2008. Finite-difference modelling of s-wave splitting inanisotropic media. Geophys. Prosp., 56: 293-312.
- Blanch, J.O. and Robertsson, J.O.A., 2010. A modified Lax-Wendroff correction forwave propagation in media described by Zener elements. Geophys. J. Roy. Astronom.Soc., 131: 381-386.
- Booth. D.C. and Crampin. S.. 2010a. The anisotropic reflectivity technique: theory.Geophys. J. Roy. Astronom. Soc., 72: 755-766.
- Booth, D.C. and Crampin, S., 2010b. The anisotropic reflectivity technique: anomalousreflected arrivals from an anisotropic upper mantle. Geophys. J. Internat. 72:767-782.
- Bouchon, M., 1996. The discrete wave number formulation of boundary integralequations and boundary element methods: a review with applications to thesimulation of seismic wave propagation in complex geological structures. Pure Appl.Geophys., 148: 3-20.
- Carcione, J.M. and Helle, H.B.. 1999. Numerical solution of the poroviscoelastic waveequationon a staggered mesh. J. Computat. Phys., 154: 520-527.
- Carcione, J.M., 2014. Wave Fields in Real Media. Theory and numerical simulation ofwave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rded. Elsevier Science Publishers, Amsterdam.
- Carcione. J.M.. Dan. K.. Behle. A. and Seriani. G.. 1992. A spectral scheme for wavepropagation simulation in 3-D elastic-anisotropic media. Geophysics. 57: 1593-1607.
- Carcione, J.M.. Herman, G.C. and ten Kroode, A.P.E., 2002. Seismic modeling.Geophysics. 67: 1304-1325.
- Chen, X., 1993. A systematic and efficient method of computing normal modes formultilayered half-space. Geophys. J. Internat., 115: 391-409.
- Dablain, M.A.. 1986. The application of high-order differencing to the scalar waveequation. Geophysics, 51: 54-66.
- Das, S., Liao, W. and Gupta, A., 2014. An efficient fourth-order low dispersive finitedifference scheme for a 2-D acoustic wave equation. J. Computat. Appl. Mathemat.,258(3): 151-167.
- De Hoon, A.T., 1960. A modification of Cagniard’s method for solving seismic pulseproblems. Appl. Sci. Res., Sect. B.8: 349-356.
- Faria, E.L. and Stoffa, P.L.. 1994. Finite-difference modeling in transversely isotropicmedia. Geophysics, 59: 282-289.
- Fei, T. and Larner. K.. 1995. Elimination of numerical dispersion in finite-differencemodeling and migration by flux-corrected transport. Geophysics, 60: 1830-1842.
- Graves. R.W.. 1996. Simulating seismic wave propagation in 3D elastic media usingstaggered-grid finite differences. Bull. Seismol. Soc. Am., 86: 1091-1106.
- Guan, Z. and Lu, J.F. 2006. Numerical Methods. Tsinghua University Press, Beijing.
- He, X.J., Yang, D.H. and Wu, H., 2014. Numerical dispersion and wave-field simulationof the Runge-Kutta discontinuous Galerkin method. Chin. J. Geophys. — Chin. Ed.,57: 906-917.
- He, X.. Yang, D. and Wu, H., 2015. A weighted Runge-Kutta discontinuous Galerkinmethod for wave field modelling. Expanded Abstr., 85th Ann. Internat. SEG Mtg.,New Orleans: 3349-3354.
- Huang, X., Yang, D., Tong, P. and Zhou, Y., 2016. 3D nearly analytic central differencemethod for computation of sensitivity kernels of wave-equation-based seismictomography. Bull. Seismol. Soc. Am., 106: 2877-2899.
- Huang, X. and Sloan, D.M., 1992. The pseudospectral method for third-order differentialequations. SIAM J. Numer. Analys., 29: 1626-1647.
- Johnson, E.C., 1991. Adaptive finite element methods for parabolic problems, I: A linearmodel problem. SIAM J. Numer. Analys., 28: 43-77.
- Kaser, M. and Dumbser, M., 2006. An arbitrary high-order discontinuous Galerkinmethod for elastic waves on unstructured meshes - I. The two-dimensional isotropiccase with external source terms. Geophys. J. Internat., 166: 855-877.
- Komatitsch, D. and Vilotte, J.P., 1998. The spectral element method: an efficient tool tosimulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc.Am., 88: 368-392.
- Kondoh, Y., Hosaka, Y. and Ishii, K., 1994. Kernel optimum nearly-analyticaldiscretization (KOND) algorithm applied to parabolic and hyperbolic equations.Comput. Mathemat. Applicat., 27(3): 59-90.
- Kosloff, D.. 1984. Elastic wave calculation by the Fourier method. Bull. Seismol. Soc.Am., 74: 875-891.
- Kosloff. D. . Pestana, R.C. and Tal-Ezer, H.. 2010. Acoustic and elastic numerical wavesimulations by recursive spatial derivative operators. Geophysics, 75(6): T167-T174.
- Ma, X., Yang, D. and Liu, F., 2011. A nearly analytic symplectically partitioned
- Runge-Kutta method for 2-D seismic wave equations. Geophys. J. Internat., 187:480-496.
- Ma, X., Yang, D., Song, G. and Wang, M., 2014. A low-dispersive symplecticpartitioned Runge-Kutta method for solving seismic-wave equations, I: Scheme andtheoretical analysis. Bull. Seismol. Soc. Am., 104: 2206-2225.
- Ma, X., Yang, D. and Song, G., 2015. A low-dispersive symplectic partitionedrunge-kutta method for solving seismic-wave equations, II: Wavefieldsimulations. Bull. Seismol. Soc. Am., 105: 657-675.
- Moczo, P.. Kristek, J. and Halada, L.. 2000. 3D fourth-order staggered-gridfinite-difference schemes: stability and grid dispersion. Bull. Seismol. Soc. Am., 90:587-603.
- Moczo, P., Kristek, J.. Wavrvéuk, V.. Archuleta, R.J. and Halada, L.. 2002. 3Dheterogeneous staggered-grid finite-difference modeling of seismic motion withvolume harmonic and arithmetic averaging of elastic moduli and densities. Bull.Seismol. Soc. Am., 92: 3042-3066.
- Zhang, Q.H., Liao, C., Sheng, N. and Chen, L.L., 2015. Study of Padé two-wayparabolic equation and application in indoor radio wave propagation problems. ActaElectron. Sin., 8: 30.
- Richtmyer, R.D. and Morton K.W., 1968. Difference methods for initial-value problems.Mathemat. Comput., 22: 465.
- Salcedo, M. , Novais, A., Schleicher, J. and Costa, J.C., 2017.. Optimization of theparameters in complex Padé Fourier finite-difference migration. Geophysics, 82(3):9-S269.
- Sei, A. and Symes, W.W.. 1995. Dispersion analysis of numerical wave propagation andits computational consequences. J. Sci. Comput., 10: 1-27.
- Seriani, G., 1992. High-order spectral element method for elastic wave modeling.
- Expanded Abstr. 62nd Ann. Internat. SEG Mtg., New Orleans: 1285-1288.
- Sidler, R. and Carcione, J.M., 2007. Wave reflection at an anelastic transversely isotropicocean bottom. Geophysics.72(5): SM139-SM146.
- Song, G.J.. Yang, D.H., Tong, P., and Lian, Y.S.. 2012. Parallel WNAD algorithm forsolving 3D elastic equation and its wavefield simulations in TI media. Chin. J.Geophys. 55: 547-559.
- Takeuchi, N. and Geller, R.J.. 2000. Optimally accurate second order time-domain finitedifference scheme for computing synthetic seismograms in 2-D and 3-D media. Phys.Earth Planet. Inter., 119: 99-131.
- Tong, P.. Yang, D., Hua, B. and Wang, M.. 2013. A high-order stereo-modeling methodfor solving wave equations. Bull. Seismol. Soc. Am., 103: 811-833.
- Vichnevetsky, R., 1979. Stability charts in the numerical approximation of partialdifferential equations: a review. Mathemat. Comput. Simulat., 21: 170-177.
- Virieux, J... 1984. Wave propagation in heterogeneous media: velocity-stressfinite-difference method. Geophysics, 49: 1933-1957.
- Virieux. J... 1986. P-SV wave propagation in heterogeneous media: velocity-stressfinite-difference method. Geophysics. 51: 889-901.
- Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: apredictor-corrector method of the implicit Runge-Kutta scheme. J. Seismic Explor.,23: 431-462.
- Yang, D.H., Wang, N. and Liu, E., 2012. A_ strong stability-preservingpredictor-corrector method for the simulation of elastic wave propagation inanisotropic media. Communic. Computat. Phys., 12: 1006-1032.
- Yang, L. and Sen, M.K., 2010.. Finite-difference modeling with adaptive variable-lengthspatial operators. Geophysics, 76(4): T79-T89.
- Yang, D.H., 2002. Finite element method of the elastic wave equation and wave-fieldssimulation in two-phase anisotropic media. Chin. J. Geophys., 45: 600-610.
- Yang, D.H., Liu, E., Zhang, Z.J. and Teng, J., 2002. Finite-difference modelling intwo-dimensional anisotropic media using a flux-corrected transport technique.Geophys. J. Internat., 148: 320-328.
- Yang, D. and Wang, L., 2010. A split-step algorithm for effectively suppressing thenumerical dispersion for 3D seismic propagation modeling. Bull. Seismol. Soc. Am.,4: 1470-1484.
- Yang, D., He, X.. Ma, X., Zhou, Y. and Li, J.. 2016. An optimal nearly analyticdiscrete-weighted runge-kutta discontinuous galerkin hybrid method for acousticwavefield modeling. Geophysics, 81(5): T251-T263.
- Yang, D., Song, G. and Lu, M., 2007. Optimally accurate nearly analytic discrete schemefor wave-field simulation in 3D anisotropic media. (5), 1557-1569.
- Yang, D., Teng, J.. Zhang, Z. and Liu, E., 2003. A nearly analytic discrete method foracoustic and elastic wave equations in anisotropic media . Bull. Seismol. Soc. Am.,93: 882-890.
- Yang, D., Wang, L. and Deng, X., 2010. An explicit split - step algorithm of the implicitadams method for solving 2-D acoustic and elastic wave equations. Geophys. J.Internat., 180: 291-310.
- Yang, D.. Wang, M. and Ma, X. (2014). Symplectic stereomodelling method for solvingelastic wave equations in porous media. Geophys. J. Internat., 196: 560-579.
- Zhou, H. and Chen, X., 2008. The localized boundary integral equation-discretewavenumber method for simulating P-SV wave scattering by an irregulartopography. Bull. Seismol. Soc. Am., 98: 265-279.
- Zhou, Y., Yang, D., Ma, X. and Li, J.. 2015. An effective method to suppress numericaldispersion in 2D acoustic and elastic modelling using a high-order Padéapproximation. J. Geophys. Engineer., 12: 114-129.