ARTICLE

Anisotropic traveltime tomography of diffraction arrivals based on eikonal equation

YOGESH ARORA ILYA TSVANKIN
Show Less
Department of Geophysics, Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, U.S.A.,
JSE 2020, 29(5), 455–475;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Arora, Y. and Tsvankin, I., 2020. Anisotropic traveltime tomography of diffraction arrivals based on eikonal equation. Journal of Seismic Exploration, 29: 455-475. Seismic diffractions provide wide angular illumination of the subsurface and, therefore, can supplement reflections in estimation of the parameters of anisotropic media. Migration velocity analysis of reflection data is usually performed by minimizing residual moveout in common-image gathers. This approach, however, cannot be directly applied to diffractions. Here, we propose to use the linearized eikonal equation to carry out traveltime tomography of diffraction arrivals in VTI (transversely isotropic with a vertical symmetry axis) media. The eikonal equation makes it possible to compute diffraction traveltimes along with their derivatives with respect to the mediumparameters. To solve the linearized eikonal equation for VTI media, we employ an efficient and robust second-order finite-difference (FD) methodology based on the Fast Marching method. The accuracy of the developed technique is verified by computing the traveltime perturbations caused by Gaussian parameter anomalies embedded in a homogeneous VTI background. Another test of the modeling methodology involves perturbing the parameters of the structurally complex VTI Marmousi model. Then we perform traveltime tomography of transmission data generated for a VTI medium with Gaussian anomalies in the P-wave normal-moveout (Vimo) and horizontal (jor velocities. Finally, the tomographic algorithm is applied to diffraction traveltimes from scatterers embedded in the VTI Marmousi model. We use structure-oriented smoothing filters to condition the inversion gradients, which yields more geologically consistent velocity models. To evaluate the stability of the algorithm, this test is repeated using noise-contaminated traveltimes.

Keywords
diffracted waves
anisotropy
transverse isotropy
traveltime tomography
velocity analysis
eikonal equation
finite-difference approximation
References
  1. Alkhalifah, T., 1997. An anisotropic Marmousi model: SEP-95. Stanford Exploration
  2. Project: 265- 282.
  3. Alkhalifah, T., 1998. Acoustic approximations for processing in transversely isotropic
  4. media. Geophysics, 63, 623-631.
  5. Arora, Y. and Tsvankin, I., 2016. Separation of diffracted waves in transversely isotropic
  6. media. Studia Geophys. Geodaet., 60: 487-499.
  7. Arora, Y. and Tsvankin, I., 2018. Analysis of diffractions in dip-angle gathers for
  8. transversely isotropic media. J. Seismic Explor., 27: 515-530.
  9. Bregman, N., Bailey, R. and Chapman, C., 1989. Crosshole seismic tomography.
  10. Geophysics, 54: 200-215.
  11. Cao, S. and Greenhalgh, S., 1994. Finite-difference solution of the eikonal equation using
  12. ; an efficient, first-arrival, wavefront tracking scheme. Geophysics, 59: 632-643.
  13. Cerveny, V., 2005. Seismic Ray Theory. Cambridge University Press, Cambridge.
  14. Chapman, C. and Pratt, R., 1992. Traveltime tomography in anisotropic media - I. Theory.
  15. Geophys. J. Internat., 109: 1-19.
  16. Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer.
  17. Mathemat., 1: 269-271.
  18. Fomel, S., 2004. On anelliptic approximations for qP velocities in VTI media. Geophys.
  19. Prosp., 52: 247-259.
  20. Fomel, S., Sava, P., Vlad, I, Liu, Y. and Bashkardin, V., 2013. Madagascar: Open-source
  21. software project for multidimensional data analysis and _ reproducible
  22. computational experiments. J. Open Res. Softw., 1.
  23. Franklin, J.B. and Harris, J.M., 2001. A high-order fast marching scheme for the linearized
  24. eikonal equation. J. Computat. Acoust., 9: 1095-1109.
  25. Hale, D., 2009. Structure-oriented smoothing and semblance. CWP report, 635: 261-270.
  26. Huang, J.-W. and Bellefleur, G., 2012. Joint transmission and reflection traveltime
  27. tomography using the fast sweeping method and the adjoint-state technique.
  28. Geophys. J. Internat., 188: 570-582.
  29. Khaidukov, V., Landa, E. and Moser, T.J., 2004. Diffraction imaging by focusing-
  30. defocusing: An outlook on seismic superresolution. Geophysics, 69: 1478-1490.
  31. Klem-Musatov, K.D., Hron, F., Lines, L.R. and Meeder, C.A., 1994. Theory of Seismic
  32. Diffractions. SEG, Tulsa, OK.
  33. Landa, E., Fomel, S. and Reshef, M., 2008. Separation, imaging, and velocity analysis of
  34. seismic diffractions using migrated dip-angle gathers. Expanded Abstr., 78th Ann.
  35. Internat. SEG Mtg., Las Vegas.
  36. Li, S., Vladimirsky, A. and Fomel, S., 2013. First-break traveltime tomography with the
  37. double-square-root eikonal equation. Geophysics, 78(6): U89-U101.
  38. Li, V., Guitton, A.,Tsvankin, I. and Alkhalifah, T., 2019. Image-domain wavefield
  39. tomography for VTI media. Geophysics, 84(2): C119-C128.
  40. Métivier, L. and Brossier, R., 2016. The seiscope optimization toolbox: A large-scale
  41. nonlinear optimization library based on reverse communication. Geophysics,
  42. 81(2): F1-F15.
  43. Moser, T. and Howard, C., 2008. Diffraction imaging in depth. Geophys. Prosp., 56:
  44. 627- 641.
  45. Nocedal, J. and Wright, S., 2006. Numerical Optimization, 2' ed. Springer Science &
  46. Business Media, New York.
  47. Qin, F. and Schuster, G.T., 1993. First-arrival traveltime calculation for anisotropic
  48. media. Geophysics, 58: 1349-1358.
  49. Rickett, J. and Fomel, S., 1999. A second-order fast marching eikonal solver. Stanford
  50. Exploration Project Report, 100: 287-293.
  51. Rouy, E. and Tourin, A., 1992. A viscosity solutions approach to shape-from-shading.
  52. SIAM J. Numer. Analys., 29: 867-884.
  53. Sethian, J.A., 1996. A fast marching level set method for monotonically advancing fronts.
  54. Proc. Nation. Acad. Sci., 93: 1591-1595.
  55. Sethian, J.A. and Popovici, A.M., 1999, Three-dimensional traveltimes computation using
  56. the fast marching method. Geophysics, 64: 516-523.
  57. Treister, E. and Haber, E., 2016. A fast marching algorithm for the factored eikonal
  58. equation. J. Computat. Phys., 324: 210-225.
  59. Tromp, J., Tape, C. and Liu, Q., 2005. Seismic tomography, adjoint methods, time
  60. reversal and banana-doughnut kernels. Geophys. J. Internat., 160: 195-216.
  61. Tsvankin, I., 2012. Seismic Signatures and Analysis of Reflection Data in Anisotropic
  62. Media, 3rd Ed. SEG, Tulsa, OK.
  63. Van Trier, J. and Symes, W.W., 1991. Upwind finite-difference calculation of
  64. traveltimes. Geophysics, 56: 812-821.
  65. Vidale, J.E., 1990. Finite-difference calculation of traveltimes in three dimensions.
  66. Geophysics, 55: 521-526.
  67. Waheed, U.B., Alkhalifah, T. and Wang, H., 2015a. Efficient traveltime solutions of the
  68. acoustic TI eikonal equation. J. Computat. Phys., 282: 62-76.
  69. Waheed, U.B., Yarman, CE. and Flagg, G., 2015b. An iterative, fast-sweeping-based
  70. eikonal solver for 3D tilted anisotropic media. Geophysics, 80(3): C49-CS58.
  71. Waheed, U.B., Flagg, G. and Yarman, C.E., 2016. First-arrival traveltime tomography for
  72. anisotropic media using the adjoint-state method. Geophysics, 81(4): R147-R155.
  73. Wang, X. and Tsvankin, I., 2013. Multiparameter TTI tomography of P-wave reflection
  74. and VSP data. Geophysics, 78(5): WC51-WC63.
  75. Zhao, H., 2005. A fast sweeping method for eikonal equations. Mathemat. Computat., 74:
  76. 603-627.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing