Cite this article
1
Download
47
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Anisotropic traveltime tomography of diffraction arrivals based on eikonal equation

YOGESH ARORA ILYA TSVANKIN
Show Less
Department of Geophysics, Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, U.S.A.,
JSE 2020, 29(5), 455–475;
Submitted: 17 January 2020 | Accepted: 11 May 2020 | Published: 1 October 2020
© 2020 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Arora, Y. and Tsvankin, I., 2020. Anisotropic traveltime tomography of diffraction arrivals based on eikonal equation. Journal of Seismic Exploration, 29: 455-475. Seismic diffractions provide wide angular illumination of the subsurface and, therefore, can supplement reflections in estimation of the parameters of anisotropic media. Migration velocity analysis of reflection data is usually performed by minimizing residual moveout in common-image gathers. This approach, however, cannot be directly applied to diffractions. Here, we propose to use the linearized eikonal equation to carry out traveltime tomography of diffraction arrivals in VTI (transversely isotropic with a vertical symmetry axis) media. The eikonal equation makes it possible to compute diffraction traveltimes along with their derivatives with respect to the mediumparameters. To solve the linearized eikonal equation for VTI media, we employ an efficient and robust second-order finite-difference (FD) methodology based on the Fast Marching method. The accuracy of the developed technique is verified by computing the traveltime perturbations caused by Gaussian parameter anomalies embedded in a homogeneous VTI background. Another test of the modeling methodology involves perturbing the parameters of the structurally complex VTI Marmousi model. Then we perform traveltime tomography of transmission data generated for a VTI medium with Gaussian anomalies in the P-wave normal-moveout (Vimo) and horizontal (jor velocities. Finally, the tomographic algorithm is applied to diffraction traveltimes from scatterers embedded in the VTI Marmousi model. We use structure-oriented smoothing filters to condition the inversion gradients, which yields more geologically consistent velocity models. To evaluate the stability of the algorithm, this test is repeated using noise-contaminated traveltimes.

Keywords
diffracted waves
anisotropy
transverse isotropy
traveltime tomography
velocity analysis
eikonal equation
finite-difference approximation
References
  1. Alkhalifah, T., 1997. An anisotropic Marmousi model: SEP-95. Stanford ExplorationProject: 265- 282.
  2. Alkhalifah, T., 1998. Acoustic approximations for processing in transversely isotropicmedia. Geophysics, 63, 623-631.
  3. Arora, Y. and Tsvankin, I., 2016. Separation of diffracted waves in transversely isotropicmedia. Studia Geophys. Geodaet., 60: 487-499.
  4. Arora, Y. and Tsvankin, I., 2018. Analysis of diffractions in dip-angle gathers fortransversely isotropic media. J. Seismic Explor., 27: 515-530.
  5. Bregman, N., Bailey, R. and Chapman, C., 1989. Crosshole seismic tomography.Geophysics, 54: 200-215.
  6. Cao, S. and Greenhalgh, S., 1994. Finite-difference solution of the eikonal equation using; an efficient, first-arrival, wavefront tracking scheme. Geophysics, 59: 632-643.
  7. Cerveny, V., 2005. Seismic Ray Theory. Cambridge University Press, Cambridge.
  8. Chapman, C. and Pratt, R., 1992. Traveltime tomography in anisotropic media - I. Theory.Geophys. J. Internat., 109: 1-19.
  9. Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer.Mathemat., 1: 269-271.
  10. Fomel, S., 2004. On anelliptic approximations for qP velocities in VTI media. Geophys.Prosp., 52: 247-259.
  11. Fomel, S., Sava, P., Vlad, I, Liu, Y. and Bashkardin, V., 2013. Madagascar: Open-sourcesoftware project for multidimensional data analysis and _ reproduciblecomputational experiments. J. Open Res. Softw., 1.
  12. Franklin, J.B. and Harris, J.M., 2001. A high-order fast marching scheme for the linearizedeikonal equation. J. Computat. Acoust., 9: 1095-1109.
  13. Hale, D., 2009. Structure-oriented smoothing and semblance. CWP report, 635: 261-270.
  14. Huang, J.-W. and Bellefleur, G., 2012. Joint transmission and reflection traveltimetomography using the fast sweeping method and the adjoint-state technique.Geophys. J. Internat., 188: 570-582.
  15. Khaidukov, V., Landa, E. and Moser, T.J., 2004. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution. Geophysics, 69: 1478-1490.
  16. Klem-Musatov, K.D., Hron, F., Lines, L.R. and Meeder, C.A., 1994. Theory of SeismicDiffractions. SEG, Tulsa, OK.
  17. Landa, E., Fomel, S. and Reshef, M., 2008. Separation, imaging, and velocity analysis ofseismic diffractions using migrated dip-angle gathers. Expanded Abstr., 78th Ann.Internat. SEG Mtg., Las Vegas.
  18. Li, S., Vladimirsky, A. and Fomel, S., 2013. First-break traveltime tomography with thedouble-square-root eikonal equation. Geophysics, 78(6): U89-U101.
  19. Li, V., Guitton, A.,Tsvankin, I. and Alkhalifah, T., 2019. Image-domain wavefieldtomography for VTI media. Geophysics, 84(2): C119-C128.
  20. Métivier, L. and Brossier, R., 2016. The seiscope optimization toolbox: A large-scalenonlinear optimization library based on reverse communication. Geophysics,81(2): F1-F15.
  21. Moser, T. and Howard, C., 2008. Diffraction imaging in depth. Geophys. Prosp., 56:627- 641.
  22. Nocedal, J. and Wright, S., 2006. Numerical Optimization, 2' ed. Springer Science &Business Media, New York.
  23. Qin, F. and Schuster, G.T., 1993. First-arrival traveltime calculation for anisotropicmedia. Geophysics, 58: 1349-1358.
  24. Rickett, J. and Fomel, S., 1999. A second-order fast marching eikonal solver. StanfordExploration Project Report, 100: 287-293.
  25. Rouy, E. and Tourin, A., 1992. A viscosity solutions approach to shape-from-shading.SIAM J. Numer. Analys., 29: 867-884.
  26. Sethian, J.A., 1996. A fast marching level set method for monotonically advancing fronts.Proc. Nation. Acad. Sci., 93: 1591-1595.
  27. Sethian, J.A. and Popovici, A.M., 1999, Three-dimensional traveltimes computation usingthe fast marching method. Geophysics, 64: 516-523.
  28. Treister, E. and Haber, E., 2016. A fast marching algorithm for the factored eikonalequation. J. Computat. Phys., 324: 210-225.
  29. Tromp, J., Tape, C. and Liu, Q., 2005. Seismic tomography, adjoint methods, timereversal and banana-doughnut kernels. Geophys. J. Internat., 160: 195-216.
  30. Tsvankin, I., 2012. Seismic Signatures and Analysis of Reflection Data in AnisotropicMedia, 3rd Ed. SEG, Tulsa, OK.
  31. Van Trier, J. and Symes, W.W., 1991. Upwind finite-difference calculation oftraveltimes. Geophysics, 56: 812-821.
  32. Vidale, J.E., 1990. Finite-difference calculation of traveltimes in three dimensions.Geophysics, 55: 521-526.
  33. Waheed, U.B., Alkhalifah, T. and Wang, H., 2015a. Efficient traveltime solutions of theacoustic TI eikonal equation. J. Computat. Phys., 282: 62-76.
  34. Waheed, U.B., Yarman, CE. and Flagg, G., 2015b. An iterative, fast-sweeping-basedeikonal solver for 3D tilted anisotropic media. Geophysics, 80(3): C49-CS58.
  35. Waheed, U.B., Flagg, G. and Yarman, C.E., 2016. First-arrival traveltime tomography foranisotropic media using the adjoint-state method. Geophysics, 81(4): R147-R155.
  36. Wang, X. and Tsvankin, I., 2013. Multiparameter TTI tomography of P-wave reflectionand VSP data. Geophysics, 78(5): WC51-WC63.
  37. Zhao, H., 2005. A fast sweeping method for eikonal equations. Mathemat. Computat., 74:603-627.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing