An accurate method of calculating the gradients of seismic wave reflection coefficients to rock properties in transversely isotropic media

Bao, Y., Chen, J. and Liu, X.B., 2020. An accurate method of calculating the gradients of seismic wave reflection coefficients to rock properties in transversely isotropic media. Journal of Seismic Exploration, 29: 275-297. The amplitude versus offset (AVO) inversion technique plays a critical role in exploration geophysics. The key issue of AVO inversion is the computational accuracy of the gradients of seismic wave reflection coefficients (SWRCs) to rock properties. Additionally, the anisotropic medium has the better representation of the earth than the isotropic medium. These issues will lead deviations in AVO process and weak the reliability of the final results. In this paper, we propose to develop a method of accurately calculating the gradients of SWRCs to rock properties (e.g., P- and S-velocities, density and anisotropic parameters) in transversely isotropic (TI) media. We calculate SWRCs in TI media by adding an anisotropic perturbation term on the exact Zoeppritz equations of the isotropic part. We obtain the partial derivatives of SWRCs to rock properties through a series of simple linear equations which not only keep a high accuracy but also offer a low computational cost. Finally, based on numerical tests, we plot the curves of SWRCs and partial derivatives of SWRCs with respect to rock properties and analyze their features.
- Aki, K. and Richards, P., 1980. Quantitative Seismology - Theory and Method. W.H.Freeman and Co., San Francisco.
- Alemie, W. and Sacchi, M.D., 2011. High-resolution three-term AVO inversion bymeans of a Trivariate Cauchy probability distribution. Geophysics, 76(3): R43-R55.
- Backus, G.E., 1962. Long-wave elastic anisotropy produced by horizontal layering. J.Geophys. Res., 67: 4427-4440.
- Banik, N.C., 1987. An effective anisotropy parameter in transversely isotropic media.Geophysics, 52: 1654-1664.
- Booth, A.D., Emir, E. and Diez, A., 2015. Approximations to seismic AVA responses:
- Validity and potential in glaciological applications. Geophysics, 81(1), WA1-WA11.
- Bortfeld, R., 1961. Approximations to the reflection and transmission coefficients ofplane longitudinal and transverse waves. Geophys. Prosp., 9: 485-502.
- Carcione, J.M., Kosloff, D. and Behle, A., 1991. Long-wave anisotropy in stratifiedmedia: A numerical test. Geophysics, 56: 245-254.
- Castagna, J.P. and Backus, M.M., 1993. Offset-dependent Reflectivity - Theory andPractice of AVO Analysis. SEG, Tulsa, OK.
- Castagna, J.P., Swan, H.W. and Foster, D.J., 1998. Framework for AVO gradient andintercept interpretation. Geophysics, 63: 948-956.
- Daley, P.F. and Hron, F., 1977. Reflection and transmission coefficients for transverselyisotropic media. Bull. Seismol. Soc. Am., 67: 661-675.
- Hampson, D., 1991. AVO inversion, theory and practice. The Leading Edge, 10(6), 39-42.
- Li, H., 2005. The application of wide-angle reflection method in central Tarim basin.
- Geophys. Prosp. Petrol. (in Chinese), 44: 292-295.
- Kim, K.Y., Wrolstad, K.H. and Aminzadeh, F., 1993. Effects of transverse isotropy on P-wave AVO for gas sands. Geophysics, 58: 883-888.
- Liu, X., Chen, J., Liu, F., Wang, A. and Zhao, Z., 2019. Accurate Jacobian matrix usingthe exact Zoeppritz equations and effects on the inversion of reservoir properties inporous media. Pure Appl. Geophys., 176: 315-333.
- Liu, X., Liu, F., Meng, X. and Xiao, J., 2012. An accurate method of computing thegradient of seismic wave reflection coefficients (SWRCs) for the inversion ofstratum parameters. Surv. Geophys., 33: 293-309.
- Lu, J., Wang, Y., Chen, J. and An, Y., 2018. Joint anisotropic amplitude variation withoffset inversion of PP and PS seismic data. Geophysics, 83(2), N31-N50.
- Mallick, S., 1995. Model-based inversion of amplitude-variations-with-offset data using agenetic algorithm. Geophysics, 60: 939-954.
- Mallick, S. and Frazer, L.N., 1991. Reflection/transmission coefficients and azimuthalanisotropy in marine seismic studies. Geophys. J. Internat., 105: 241-252.
- Riiger, A., 2002. Reflection Coefficients and Azimuthal AVO Analysis in AnisotropicMedia. SEG, Tulsa, OK.
- Russell, B.H., 2014. Prestack seismic amplitude analysis: An integrated overview.Interpretation, 2(2), SC19-SC36.
- Rutherford, S.R. and Williams, R.H., 1989. Amplitude-versus-offset variations in gassands. Geophysics, 54: 680-688.
- Shou, H., Liu, H. and Gao, J., 2006. AVO inversion based on common shot migration.Appl. Geophys., 3: 98-104.
- Shuey, R.T., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.
- Sidler, R. and Holliger, K., 2010. Seismic reflectivity of the sediment-covered seafloor:effects of velocity gradients and fine-scale layering. Geophys. J. Internat., 181: 521-
- Simmons Jr., J.L. and Backus, M.M., 1996. Waveform-based AVO inversion and AVOprediction-error. Geophysics, 61: 1575-1588.
- Sun, X.P. and Zhao, L.W., 2006. Seismic Amplitude Interpretation (in Chinese).Petroleum Industry Press, Beijing.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Tsvankin, I., 1995. Body-wave radiation patterns and AVO in transversely isotropicmedia. Geophysics, 60: 1409-1425.
- Tura, A. and Lumey, D.E., 1999. Estimating pressure and saturation changes time-lapse
- AVO data. Expanded Abstr., 69th Ann. Internat. SEG Mtg., Houston: 1655-1658.
- Vavryéuk, V., 1999. Weak-contrast reflection/transmission coefficients in weaklyanisotropic elastic media: P-wave incidence. Geophys. J. Internat., 138: 553-562.
- Wang, Y., 1999. Approximations to the Zoeppritz equations and their use in AVOanalysis. Geophysics, 64: 1920-1927.
- Zong, Z., Yin, X. and Wu, G., 2012. AVO inversion and poroelasticity with P-and S-wave moduli. Geophysics, 77(6), N17-N24.