ARTICLE

An accurate method of calculating the gradients of seismic wave reflection coefficients to rock properties in transversely isotropic media

YIFEI BAO JINGYI CHEN XIAOBO LIU
Show Less
Seismic Anisotropy Group, Department of Geosciences, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, U.S.A.,
JSE 2020, 29(3), 275–297;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bao, Y., Chen, J. and Liu, X.B., 2020. An accurate method of calculating the gradients of seismic wave reflection coefficients to rock properties in transversely isotropic media. Journal of Seismic Exploration, 29: 275-297. The amplitude versus offset (AVO) inversion technique plays a critical role in exploration geophysics. The key issue of AVO inversion is the computational accuracy of the gradients of seismic wave reflection coefficients (SWRCs) to rock properties. Additionally, the anisotropic medium has the better representation of the earth than the isotropic medium. These issues will lead deviations in AVO process and weak the reliability of the final results. In this paper, we propose to develop a method of accurately calculating the gradients of SWRCs to rock properties (e.g., P- and S-velocities, density and anisotropic parameters) in transversely isotropic (TI) media. We calculate SWRCs in TI media by adding an anisotropic perturbation term on the exact Zoeppritz equations of the isotropic part. We obtain the partial derivatives of SWRCs to rock properties through a series of simple linear equations which not only keep a high accuracy but also offer a low computational cost. Finally, based on numerical tests, we plot the curves of SWRCs and partial derivatives of SWRCs with respect to rock properties and analyze their features.

Keywords
exact Zoeppritz equations
accurate gradient solution
transversely isotropy
References
  1. Aki, K. and Richards, P., 1980. Quantitative Seismology - Theory and Method. W.H.
  2. Freeman and Co., San Francisco.
  3. Alemie, W. and Sacchi, M.D., 2011. High-resolution three-term AVO inversion by
  4. means of a Trivariate Cauchy probability distribution. Geophysics, 76(3): R43-R55.
  5. Backus, G.E., 1962. Long-wave elastic anisotropy produced by horizontal layering. J.
  6. Geophys. Res., 67: 4427-4440.
  7. Banik, N.C., 1987. An effective anisotropy parameter in transversely isotropic media.
  8. Geophysics, 52: 1654-1664.
  9. Booth, A.D., Emir, E. and Diez, A., 2015. Approximations to seismic AVA responses:
  10. Validity and potential in glaciological applications. Geophysics, 81(1), WA1-WA11.
  11. Bortfeld, R., 1961. Approximations to the reflection and transmission coefficients of
  12. plane longitudinal and transverse waves. Geophys. Prosp., 9: 485-502.
  13. Carcione, J.M., Kosloff, D. and Behle, A., 1991. Long-wave anisotropy in stratified
  14. media: A numerical test. Geophysics, 56: 245-254.
  15. Castagna, J.P. and Backus, M.M., 1993. Offset-dependent Reflectivity - Theory and
  16. Practice of AVO Analysis. SEG, Tulsa, OK.
  17. Castagna, J.P., Swan, H.W. and Foster, D.J., 1998. Framework for AVO gradient and
  18. intercept interpretation. Geophysics, 63: 948-956.
  19. Daley, P.F. and Hron, F., 1977. Reflection and transmission coefficients for transversely
  20. isotropic media. Bull. Seismol. Soc. Am., 67: 661-675.
  21. Hampson, D., 1991. AVO inversion, theory and practice. The Leading Edge, 10(6), 39-42.
  22. Li, H., 2005. The application of wide-angle reflection method in central Tarim basin.
  23. Geophys. Prosp. Petrol. (in Chinese), 44: 292-295.
  24. Kim, K.Y., Wrolstad, K.H. and Aminzadeh, F., 1993. Effects of transverse isotropy on P-
  25. wave AVO for gas sands. Geophysics, 58: 883-888.
  26. Liu, X., Chen, J., Liu, F., Wang, A. and Zhao, Z., 2019. Accurate Jacobian matrix using
  27. the exact Zoeppritz equations and effects on the inversion of reservoir properties in
  28. porous media. Pure Appl. Geophys., 176: 315-333.
  29. Liu, X., Liu, F., Meng, X. and Xiao, J., 2012. An accurate method of computing the
  30. gradient of seismic wave reflection coefficients (SWRCs) for the inversion of
  31. stratum parameters. Surv. Geophys., 33: 293-309.
  32. Lu, J., Wang, Y., Chen, J. and An, Y., 2018. Joint anisotropic amplitude variation with
  33. offset inversion of PP and PS seismic data. Geophysics, 83(2), N31-N50.
  34. Mallick, S., 1995. Model-based inversion of amplitude-variations-with-offset data using a
  35. genetic algorithm. Geophysics, 60: 939-954.
  36. Mallick, S. and Frazer, L.N., 1991. Reflection/transmission coefficients and azimuthal
  37. anisotropy in marine seismic studies. Geophys. J. Internat., 105: 241-252.
  38. Riiger, A., 2002. Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic
  39. Media. SEG, Tulsa, OK.
  40. Russell, B.H., 2014. Prestack seismic amplitude analysis: An integrated overview.
  41. Interpretation, 2(2), SC19-SC36.
  42. Rutherford, S.R. and Williams, R.H., 1989. Amplitude-versus-offset variations in gas
  43. sands. Geophysics, 54: 680-688.
  44. Shou, H., Liu, H. and Gao, J., 2006. AVO inversion based on common shot migration.
  45. Appl. Geophys., 3: 98-104.
  46. Shuey, R.T., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.
  47. Sidler, R. and Holliger, K., 2010. Seismic reflectivity of the sediment-covered seafloor:
  48. effects of velocity gradients and fine-scale layering. Geophys. J. Internat., 181: 521-
  49. Simmons Jr., J.L. and Backus, M.M., 1996. Waveform-based AVO inversion and AVO
  50. prediction-error. Geophysics, 61: 1575-1588.
  51. Sun, X.P. and Zhao, L.W., 2006. Seismic Amplitude Interpretation (in Chinese).
  52. Petroleum Industry Press, Beijing.
  53. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  54. Tsvankin, I., 1995. Body-wave radiation patterns and AVO in transversely isotropic
  55. media. Geophysics, 60: 1409-1425.
  56. Tura, A. and Lumey, D.E., 1999. Estimating pressure and saturation changes time-lapse
  57. AVO data. Expanded Abstr., 69th Ann. Internat. SEG Mtg., Houston: 1655-1658.
  58. Vavryéuk, V., 1999. Weak-contrast reflection/transmission coefficients in weakly
  59. anisotropic elastic media: P-wave incidence. Geophys. J. Internat., 138: 553-562.
  60. Wang, Y., 1999. Approximations to the Zoeppritz equations and their use in AVO
  61. analysis. Geophysics, 64: 1920-1927.
  62. Zong, Z., Yin, X. and Wu, G., 2012. AVO inversion and poroelasticity with P-and S-
  63. wave moduli. Geophysics, 77(6), N17-N24.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing