Cite this article
1
Download
41
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Subsurface characterization using synchrosqueezing transform with high-order approximations

HUI LV
Show Less
School of Civil Engineering and Architecture, Nanchang Hangkong University, 696 South Fenghe Avenue, Nanchang 330063, P.R. China,
JSE 2020, 29(1), 1–14;
Submitted: 9 August 2018 | Accepted: 5 October 2019 | Published: 1 February 2020
© 2020 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Lv, H., 2020. Subsurface characterization using synchrosqueezing transform with high-order approximations. Journal of Seismic Exploration, 29: 1-14. Time-frequency analysis methods always play an important role in subsurface seismic characterization. Due to the advantages in characterizing non-stationary signals, time-frequency analysis often obtains higher resolution than the competing methods. In this paper, we present a novel technique for subsurface seismic characterization based on a synchrosqueezing transform with high-order approximation. The new synchrosqueezing transform can obtain more accurate instantaneous frequencies by using the higher order approximations for both amplitude and phase in order to achieve a_ highly energy-concentrated time-frequency representation. We use a synthetic example to demonstrate an excellent time-frequency representation using the proposed method, i.e., to extract the time-frequency variation relation. Applications of the proposed method on two field data sets demonstrate the potential of the new method in detecting low-frequency anomaly and detecting paleo-channels with a higher time-frequency resolution. These two geological features are crucial for subsurface characterization since they are usually related with oil & gas.

Keywords
subsurface characterization
seismic signal processing
time-frequency analysis
References
  1. Allen, J.B., 1977. Short term spectral analysis, synthetic and modification by discrete
  2. Fourier transform. IEEE Transact. Acoust. Speech Sign. Process., 25: 235-238.
  3. Castagna, J.P., Sun, S. and Siegfried, R.W., 2003. Instantaneous spectral analysis:
  4. Detection of low-frequency shadows associated with hydrocarbons. The LeadingEdge, 22: 120-127.
  5. Chen, Y., Fomel, S. and Hu, J., 2014a. Iterative deblending of simultaneous-sourceseismic data using seislet-domain shaping regularization. Geophysics, 79(5):V179-V 189.hen, Y., Liu, T., Chen, X. and Li, J., 2014b. Time-frequency analysis of seismic datausing synchrosqueezing wavelet transform. J. Seismic Explor., 23: 303-312.hen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80(6): WD1-WD9.hen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptiveempirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.hen, W., Chen, Y. and Liu, W., 2016a. Ground roll attenuation using improvedcomplete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-495.hen, Y., Chen, H., Xiang, K. and Chen, X., 2016b. Geological structure guided well log
  6. Interpolation for high-fidelity full waveform inversion. Geophys. J. Internat., 207:1313-1331.hen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016c.
  7. Simultaneous denoising and reconstruction of 5D seismic data via dampedrank-reduction method. Geophys. J. Internat., 206: 1695-1717.hen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensionalseismic data. Geophys. J. Internat., 209: 21-31.hen, W., Chen, Y. and Cheng, Z., 2017a. Seismic time-frequency analysis using animproved empirical mode decomposition algorithm. J. Seismic Explor., 26: 367-380.hen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017b. Multiple reflections noiseattenuation using adaptive randomized-order empirical mode decomposition. IEEEGeosci. Remote Sens. Lett., 14: 18-22.hen, W., Yuan, J., Chen, Y. and Gan, S., 2017c. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26: 25-47.hen, W., Zhang, D. and Chen, Y., 2017d. Random noise reduction using a hybridmethod based on ensemble empirical mode decomposition. J. Seismic Explor., 26:227-249.
  8. Chen, Y., Chen, H., Xiang, K. and Chen, X., 2017e. Preserving the discontinuities inleast-squares reverse time migration of simultaneous-source data. Geophysics, 82(3):5-S196.hen, Y., 2018. Fast waveform detection for microseismic imaging using unsupervisedmachine learning. Geophys. J. Internat., 215: 1185-1199.hen, Y. and Fomel, S., 2018. EMD-seislet transform. Geophysics, 83(1): A27-A32.hen, W. and Song, H., 2018. Automatic noise attenuation based on clustering andempirical wavelet transform. J. Appl. Geophys., 159: 649-665.heng, Z., Chen, W., Chen, Y., Liu, Y., Liu, W., Li, H. and Yang, R., 2017. Applicationof bi-Gaussian S-transform in high-resolution seismic time-frequency analysis.Interpretation, 5: SC1-SC7.
  9. Daubechies, I., Lu, J. and Wu, H.T., 2011. Synchrosqueezed wavelet transforms: Anempirical mode decomposition-like tool. Appl. Computat. Harmon. Analys., 30:243-261.
  10. Ebrahimi, S., Kahoo, A.R., Chen, Y. and Porsani, M.J., 2017. A high-resolution weighted
  11. AB semblance for dealing with amplitude-variation-with-offset phenomenon.Geophysics, 82(2): V85-V93.Ceooaoao aQQa COQ 0CcCCC
  12. Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015. Dealiased seismic datainterpolation using seislet transform with low-frequency constraint: IEEE Geosci.Remote Sens. Lett., 12, 2150-2154.
  13. Gan, S., Wang, S., Chen, Y. and Chen, X., 2016a. Simultaneous-source separation usingiterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-201.
  14. Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016b. Separation of simultaneoussources using a structural-oriented median filter in the flattened dimension. Comput.Geosci., 86: 46-54.
  15. Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016c. Velocity analysis of simultaneous-source data using high-resolution semblance-coping with the strong noise. Geophys.J. Internat., 204: 768-779.
  16. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung,
  17. C.C. and Liu, H.H., 1998. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc.London, Ser. A, 454: 903-995.
  18. Jeffrey, C. and William, J., 1999. On the existence of discrete Wigner distributions. IEEESign. Process. Lett., 6(12): 304-306.
  19. Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequencynoise suppression based on mathematical morphology in microseismic monitoring.Geophysics, 81(3): V159-V167.
  20. Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detectionusing multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133:39-49.
  21. Lin, H., Li, Y., Ma, H., Yang, B. and Dai, J., 2015. Matching-pursuit-based spatial-tracetime-frequency peak filtering for seismic random noise attenuation. IEEE Geosci.Remote Sens. Lett., 12: 394-398.
  22. Liu, Y., Li, Y., Lin, H. and Ma, H., 2013. An amplitude-preserved time-frequency peakfiltering based on empirical mode decomposition for seismic random noise reduction.IEEE Geosci. Remote Sens. Lett., 112: 896-900.
  23. Liu, W., Cao, S. and Chen, Y., 2016a. Applications of variational mode decomposition inseismic time-frequency analysis: Geophysics, 81, V365—V378.
  24. Liu, W., Cao, S. and Chen, Y., 2016b. Seismic time-frequency analysis via empiricalwavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
  25. Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016c. One-step slope estimationfor dealiased seismic data reconstruction via iterative seislet thresholding. IEEEGeosci. Remote Sens. Lett., 13: 1462-1466.
  26. Liu, W., Cao, S., Liu, Y. and Chen, Y., 2016d. Synchrosqueezing transform and itsapplications in seismic data analysis. J. Seismic Explor., 25: 27-44.
  27. Liu, N., Gao, J., Jiang, X., Zhang, Z. and Wang, Q., 2017a. Seismic time-frequencyanalysis via stft-based concentration of frequency and time. IEEE Geosci. RemoteSens. Lett., 14: 127-131.
  28. Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017b. Spectral decomposition forhydrocarbon detection based on VMD and Teager-Kaiser energy. IEEE Geosci.Remote Sens. Lett., 14: 539-543.
  29. Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018a. A novel hydrocarbon detectionapproach via high-resolution frequency-dependent avo inversion based on variationalmode decomposition. IEEE Transact. Geosci. Remote Sens., 56: 2007- 2024.
  30. Liu, W., Cao, S., Wang, Z., Jiang, K., Zhang, Q. and Chen, Y., 2018b. A novel approachfor seismic time-frequency analysis based on high-order synchrosqueezing transform.IEEE Geosci. Remote Sens. Lett., 15: 1159-1163.
  31. Oberlin, T., Meignen, S. and Perrier, V., 2015. Second-order synchrosqueezing transformor invertible reassignment? Towards ideal time-frequency representations. IEEETransact. Sign. Process., 63: 1335-1344.
  32. Partyka, G.A., Gridley, J.M. and Lopez, J., 1998. Interpretational applications of spectraldecomposition in reservoir characterization. The Leading Edge, 18: 353-360.
  33. Pham, D.H. and Meignen, S., 2017. High-order synchrosqueezing transform formulticomponent signals analysis - with an application to gravitational-wave signal.IEEE Transact. Sign. Process., 65: 3168-3178.
  34. Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising andinterpolation of 2D seismic data using data-driven non-negative dictionary learning.Sign. Process., 141: 309-321.
  35. Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-drivenmulti-task sparse dictionary learning for noise attenuation of 3D seismic data.
  36. Geophysics, 82(6): V385-V396. doi: 10.1190/geo2017—0084.1.
  37. Siahsar, M.A.N., Gholtashi, S., Olyaei, E., Chen, W. and Chen, Y., 2017c. Simultaneousdenoising and interpolation of 3D seismic data via damped data-driven optimalsingular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  38. Sinha, S., Routh, P.S., Anno, P. and Castagna, J.P., 2005. Spectral decomposition ofseismic data with continuous wavelet transform. Geophysics, 70(1): P19-P25.
  39. Thakur, G. and Wu, H.T., 2011. Synchrosqueezing-based recovery of instantaneousfrequency from nonuniform samples. SIAM J. Mathemat. Analys., 43: 2078-2095.
  40. Wang, Y., Ma, X., Zhou, H. and Chen, Y., 2018a. L1-2 minimization for exact and stableseismic attenuation compensation. Geophys. J. Internat., 213: 1629-1646.
  41. Wang, Y., Zhou, H., Chen, H. and Chen, Y., 2018b. Adaptive stabilization for
  42. Q-compensated reverse time migration. Geophysics, 83: S15-S32.
  43. Zhang, Q., Mao, W., Zhou, H., Zhang, H. and Chen, Y., 2018. Hybrid-domainsimultaneous-source full waveform inversion without crosstalk noise. Geophys. J.Internat., 215: 1659-1681.
  44. Zhou, Y., Li, S., Xie, J., Zhang, D. and Chen, Y., 2017. Sparse dictionary learning forseismic noise attenuation using a fast orthogonal matching pursuit algorithm. J.Seismic Explor., 26: 433-454.
  45. Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an onlinesubspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.
  46. Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016. A periodicallyvarying code for improving deblending of simultaneous sources in marineacquisition. Geophysics, 81(3): V213-V225.
  47. Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017. Iterativedeblending of simultaneous-source data using a coherency-pass shaping operator.Geophys. J. Internat., 211: 541-557.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing