ARTICLE

Optimizing schemes of frequency-dependent AVO inversion for seismic dispersion-based high gas-saturation reservoir quantitative delineation

XIN LUO1,2 XUEHUA CHEN1,2,* LEIMING SUN3 JIE ZHANG2 WEI JIANG2
Show Less
1 State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Chengdu University of Technology, 1 Erxianqiao Dongsan Road, Chengdu, Sichuan 610059, P.R. China.,
2 Key Lab of Earth Exploration and Information Techniques, Chengdu University of Technology, 1 Erxianqiao Dongsan Road, Chengdu, Sichuan 610059, P.R. China.,
3 Data Processing Company, Geophysical-China Oilfield Services Limited, #788 Nantiao Road, Zhanjiang, Guangdong 524057, P.R. China.,
JSE 2020, 29(2), 173–199;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Luo, X., Chen, X.H., Sun, L.M., Zhang, J. and Jiang, W., 2020. Optimizing schemes of frequency- dependent AVO inversion for seismic dispersion-based high gas-saturation reservoir quantitative delineation. Journal of Seismic Exploration, 29: 173-199. Previous works demonstrate that dispersion properties can be deduced from frequency-dependent AVO inversion (FDAI). The optimal selection of dispersion-related fluid factors is of great importance to improve the accuracy of fluid identification. In order to quantitatively delineate the reservoir with high gas saturation, we propose an optimal scheme of FDAI to pursue the optimal dispersion factor which is the most sensitive to the high gas saturation reservoir. First, within the seismic frequency band, we construct an objective function to determine the optimal reference frequency by using the dispersion factors calculated from the pre-stack seismic data nearby borehole. Then, we can directly get the optimal dispersion factor related to gas-saturated reservoir according to the fluid indication coefficient. At last, we apply optimal parameters to calculate the dispersion results for seismic data volume. Numerical analysis indicates that the dispersion degree of fluid-saturated reservoir shows an approximate linear increase characteristic with increasing gas saturation. It provides an evidence for the delineation of high gas-saturation reservoirs by using the dispersion anomalies. The seismic field data results illustrate that the dispersion factors inverted by the optimal reference frequency can highlight the dispersion anomalies of gas-saturated reservoirs. Meanwhile, the optimal dispersion factor can delineate the reservoirs with high gas-saturation more accurate while less affected by the background interference of elastic layers than conventional methods. The proposed optimal workflow can improve the accuracy of FDAI and it is feasible to detect the location and spatial distribution of high gas-saturation reservoirs.

Keywords
frequency-dependent AVO inversion
dispersion factor
optimal selection
gas saturation
reservoir delineation.
References
  1. Batzle, M., Han, D.H. and Hofmann, R., 2006. Fluid mobility and frequency-dependent
  2. seismic velocity-Direct measurements. Geophysics, 70(1): N1-N9.
  3. Batzle, M. and Wang, Z., 1992. Seismic properties of pore fluids. Geophysics, 57:
  4. 1396-1408.
  5. Beckwith, J., Clark, R. and Hodgson, L., 2017. Estimating frequency-dependent
  6. attenuation quality factor values from prestack surface seismic data. Geophysics, 82(1):
  7. 011-022.
  8. Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media. J.
  9. Appl. Phys., 33: 1482-1498.
  10. Bradford, J.H., 2007. Frequency-dependent attenuation analysis of ground-penetrating
  11. radar data. Geophysics, 72(3): J7-J16.
  12. Brown, R.L., 2009. Anomalous dispersion due to hydrocarbons: the secret of reservoir
  13. geophysics? The Leading Edge, 20: 168-171.
  14. Carcione, J.M. and Picotti, S., 2006. P-wave seismic attenuation by slow-wave diffusion:
  15. effects of inhomogeneous rock properties. Geophysics, 71(3): O1-O8.
  16. Castagna, J.P., Swan, H.W. and Foster, J.D., 1998. Framework for AVO gradient and
  17. intercept interpretation. Geophysics, 63: 948-56.
  18. Chapman, M., Liu, E. and Li, X.Y., 2005. The influence of abnormally high reservoir
  19. attenuation on the AVO signature. The Leading Edge, 24: 1120-1125.
  20. Chapman, M., Liu, E. and Li, X.Y., 2006. The influence of fluid sensitive dispersion and
  21. attenuation on AVO analysis. Geophys. J. Internat., 167: 89-105.
  22. Chapman, M., Maultzsch, S., Liu, E. and Li, X.Y., 2003. The effect of fluid saturation in
  23. an anisotropic multi-scale equant porosity model. J. Appl. Geophys., 54: 191-202.
  24. Chapman, M., Zatsepin, S.V. and Crampin, S., 2002. Derivation of a microstructural
  25. poroelastic model. Geophys. J. Internat., 151: 427-451.
  26. Chen, S.Q., Li, X.Y. and Wang, S.X., 2012. The analysis of frequency-dependent
  27. characteristics for fluid detection: a physical model experiment. Appl. Geophys., 9:
  28. 195-206.
  29. hen, S.Q., Li, X.Y. and Wu, X.Y., 2014. Application of frequency-dependent AVO
  30. inversion to hydrocarbon detection. J. Seismic Explor., 23: 241-264.
  31. hen, X.H., He, Z.H. and Huang, D.J., 2008. Generalized S-transform and its
  32. time-frequency filtering. Signal Process., 24: 28-31.
  33. hen, X.H., He, Z.H., Pei, X.G., Zhong, W.L. and Yang, W., 2013. Numerical simulation
  34. of frequency-dependent seismic response and gas reservoir delineation in turbidites: A
  35. case study from China. J. Appl. Geophys., 94: 22-30.
  36. Chen, X.H., Zhong, W.L., He, Z.H. and Zou, W., 2016. Frequency-dependent attenuation
  37. of compressional wave and seismic effects in porous reservoirs saturated with
  38. multi-phase fluids. J. Petrol. Sci. Engineer., 147: 371-380.
  39. Chen, X.H., Zhong, W.L., Gao, G., Zou, W. and He, Z.H., 2017. Numerical analysis of
  40. Velocity dispersion in multi-phase fluid-saturated porous rocks. Pure Appl. Geophys.,
  41. 174: 1219-1235.
  42. Cheng, B.J., Xu, T.J. and Li, S.G., 2012. Research and application of frequency
  43. dependent AVO analysis for gas recognition. Chin. J. Geophys., 55: 608-613.
  44. Dupuy, B. and Stovas, A., 2014. Influence of frequency and saturation on AVO attributes
  45. for patchy saturated rocks. Geophysics, 79(1): B19-B36.
  46. Dvorkin, J.. Mavko, G. and Nur, A., 1995. Squirt flow in fully saturated rocks.
  47. Geophysics, 60: 97-107.
  48. Gary, D., 2002. Elastic inversion for Lame parameters. Expanded Abstr., 72nd Ann.
  49. Internat. SEG Mtg., Salt Lake city: 213-216.
  50. Gazdag, B. and Sguazzero, P., 1984. Migration of seismic data by phase-shift plus
  51. interpolation. Geophysics, 49: 124-131.
  52. Ghosal, D. and Juhlin, C., 2018. Estimation of dispersion attributes at seismic frequency -
  53. a case study from the Frigg-Delta reservoir, North Sea. J. Geophys. Engineer., 15:
  54. 1799-1810.
  55. Qaa0a
  56. Gurevich, B., Makarynska, D., Paula, O.B. and Pervukhina, M., 2010. A simple model
  57. for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics,
  58. 75(6): N109-N120
  59. Johnson, D.L., 2001. Theory of frequency-dependent acoustics in patch saturated porous
  60. media. J. Acoust. Soc. Am., 110: 682-694.
  61. Korneev, V.A., Goloshubin, G.M., Daley, T.M. and Silin, D.M., 2004. Seismic low
  62. frequency effects in monitoring fluid-saturated reservoirs. Geophysics, 69: 522-532.
  63. Liu, L.F., Cao, S.Y. and Wang, L., 2011. Poroelastic analysis of frequency-dependent
  64. amplitude-versus-offset variations. Geophysics, 76(3): C31-C40.
  65. Mavko, G., Mukerji, T. and Dvorkin, J., 2009. The Rock Physics Handbook, 2nd ed.
  66. Cambridge University Press, Cambridge.
  67. Miller, T. M., Gurevich, B. and Lebedev, M., 2010. Seismic wave attenuation and
  68. dispersion resulting from wave-induced flow in porous rocks - a review. Geophysics,
  69. 75(5): A147-A164.
  70. de Paula, O., Pervukhina, M., Makarynska, D. and Gurevich, B., 2012. Modeling squirt
  71. dispersion and attenuation in fluid-saturated rocks using pressure dependency of dry
  72. ultrasonic velocities. Geophysics, 77(3): WA157-WA168.
  73. Pride, S.R. and Berryman, J.G., 2003a. Linear dynamics of double-porosity dual
  74. permeability materials: Part 1 - Governing equations and acoustic attenuation. Phys.
  75. Rev. E, 68: 036603.
  76. Pride, S.R. and Berryman, J. G., 2003b. Linear dynamics of double-porosity dual
  77. permeability materials: Part 2 - Fluid transport equations. Phys. Rev. E, 68: 036604
  78. Quintal, B., 2012. Frequency-dependent attenuation as a potential indicator of oil
  79. saturation. J. Appl. Geophys., 82: 119-128.
  80. Rubino, J.G. and Holliger, K., 2012. Seismic attenuation and velocity dispersion in
  81. heterogeneous partially saturated porous rocks. Geophys. J. Internat., 188: 1088-1102.
  82. Russell, B. H., Hedlin, K. and Hilterman, F. J., 2003. Fluid-property discrimination with
  83. AVO: a Biot-Gassmann perspective. Geophysics, 68: 29-39.
  84. Russell, B.H., Gray, D. and Hampson, D.P., 2011. Linearized AVO and poroelasticity.
  85. Geophysics, 76(3): C19-C29.
  86. Silin, D.B. and Goloshubin, G., 2010. An asymptotic model of seismic reflection from a
  87. permeable layer. Transp. Porous Media, 83: 233-256.
  88. Silin, D.B., Korneev, V.M., Goloshubin, G.M. and Patzek, T.W., 2006. Low-frequency
  89. asymptotic analysis of seismic reflection from a fluid-saturated medium. Transp.
  90. Porous Media, 62: 283-305.
  91. Smith, G. C. and Gidlow, P. M., 1987. Weighted stacking for rock property estimation
  92. and detection of gas. Geophys. Prosp., 35: 993-1014.
  93. White, J.E., 1975. Computed seismic speeds and attenuation in rocks with partial gas
  94. saturation. Geophysics, 40: 224-232.
  95. Wiggins, R., Kenny, G.S. and McClure, C.D., 1983. A method for determining and
  96. displaying the shear wave reflectivities of a geologic formation. Europ. Patent
  97. Applicat.: 0113944.
  98. Wilson, A., Chapman, M. and Li, X.Y., 2009. Frequency-dependent AVO inversion.
  99. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston, 28: 341-345.
  100. Wu, X.Y., Chapman, M. and Li, X.Y., 2012. Frequency-dependent AVO attribute:
  101. Theory and example. First break, 30: 67-72.
  102. Wu, X.Y., Chapman, M., Li, X.Y. and Boston, P., 2014. Quantitative gas saturation
  103. estimation by frequency-dependent amplitude versus-offset analysis. Geophys. Prosp.,
  104. 62: 1224-1237.
  105. Xu, D., Wang, Y.H., Gan, Q.G. and Tang, J.M., 2011. Frequency-dependent seismic
  106. reflection coefficient for discriminating gas reservoirs. J. Geophys. Engineer., 8:
  107. 508-513.
  108. Yang, J.D. and Zhu, H.J., 2018. A time-domain complex-valued wave equation for
  109. modeling viscoacoustic wave propagation. Geophys. J. Internat., 215: 1064-1079.
  110. Yang, J.D. and Zhu, H.J., 2018. Viscoacoustic reverse time migration using a
  111. time-domain complex-valued wave equation. Geophysics, 83(6): S505-S519.
  112. Zhang, S.X, Yin, X.Y. and Zhang, G.Z., 2011. Dispersion-dependent attribute and
  113. application in hydrocarbon detection. J. Geophys. Engineer., 8: 498-507.
  114. Zhang, Z., Yin, X.Y. and Hao, Q.Y., 2014. Frequency-dependent fluid identification
  115. method based on AVO inversion. Chin. J. Geophys., 57: 4171-4184.
  116. Zhong, W.L., Chen, X.H., Luo, X., Jiang, W. and Yang, W., 2017. Amplitude
  117. non-sensitive stratal dispersion shadow for dim spot reservoir delineation. Acta Geol.
  118. Sin. (Engl. ed.), 91: 1513-1514.
  119. Zong, Z.Y., Yin, X.Y. and Wu, G.C., 2016. Frequency dependent elastic impedance
  120. inversion for interstratified dispersive elastic parameters. J. Appl. Geophys., 131:
  121. 84-93.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing