ARTICLE

Optimizing schemes of frequency-dependent AVO inversion for seismic dispersion-based high gas-saturation reservoir quantitative delineation

XIN LUO1,2 XUEHUA CHEN1,2,* LEIMING SUN3 JIE ZHANG2 WEI JIANG2
Show Less
1 State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Chengdu University of Technology, 1 Erxianqiao Dongsan Road, Chengdu, Sichuan 610059, P.R. China.,
2 Key Lab of Earth Exploration and Information Techniques, Chengdu University of Technology, 1 Erxianqiao Dongsan Road, Chengdu, Sichuan 610059, P.R. China.,
3 Data Processing Company, Geophysical-China Oilfield Services Limited, #788 Nantiao Road, Zhanjiang, Guangdong 524057, P.R. China.,
JSE 2020, 29(2), 173–199;
Submitted: 24 December 2018 | Accepted: 30 January 2020 | Published: 1 April 2020
© 2020 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Luo, X., Chen, X.H., Sun, L.M., Zhang, J. and Jiang, W., 2020. Optimizing schemes of frequency- dependent AVO inversion for seismic dispersion-based high gas-saturation reservoir quantitative delineation. Journal of Seismic Exploration, 29: 173-199. Previous works demonstrate that dispersion properties can be deduced from frequency-dependent AVO inversion (FDAI). The optimal selection of dispersion-related fluid factors is of great importance to improve the accuracy of fluid identification. In order to quantitatively delineate the reservoir with high gas saturation, we propose an optimal scheme of FDAI to pursue the optimal dispersion factor which is the most sensitive to the high gas saturation reservoir. First, within the seismic frequency band, we construct an objective function to determine the optimal reference frequency by using the dispersion factors calculated from the pre-stack seismic data nearby borehole. Then, we can directly get the optimal dispersion factor related to gas-saturated reservoir according to the fluid indication coefficient. At last, we apply optimal parameters to calculate the dispersion results for seismic data volume. Numerical analysis indicates that the dispersion degree of fluid-saturated reservoir shows an approximate linear increase characteristic with increasing gas saturation. It provides an evidence for the delineation of high gas-saturation reservoirs by using the dispersion anomalies. The seismic field data results illustrate that the dispersion factors inverted by the optimal reference frequency can highlight the dispersion anomalies of gas-saturated reservoirs. Meanwhile, the optimal dispersion factor can delineate the reservoirs with high gas-saturation more accurate while less affected by the background interference of elastic layers than conventional methods. The proposed optimal workflow can improve the accuracy of FDAI and it is feasible to detect the location and spatial distribution of high gas-saturation reservoirs.

Keywords
frequency-dependent AVO inversion
dispersion factor
optimal selection
gas saturation
reservoir delineation.
References
  1. Batzle, M., Han, D.H. and Hofmann, R., 2006. Fluid mobility and frequency-dependentseismic velocity-Direct measurements. Geophysics, 70(1): N1-N9.
  2. Batzle, M. and Wang, Z., 1992. Seismic properties of pore fluids. Geophysics, 57:1396-1408.
  3. Beckwith, J., Clark, R. and Hodgson, L., 2017. Estimating frequency-dependentattenuation quality factor values from prestack surface seismic data. Geophysics, 82(1):011-022.
  4. Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media. J.Appl. Phys., 33: 1482-1498.
  5. Bradford, J.H., 2007. Frequency-dependent attenuation analysis of ground-penetratingradar data. Geophysics, 72(3): J7-J16.
  6. Brown, R.L., 2009. Anomalous dispersion due to hydrocarbons: the secret of reservoirgeophysics? The Leading Edge, 20: 168-171.
  7. Carcione, J.M. and Picotti, S., 2006. P-wave seismic attenuation by slow-wave diffusion:effects of inhomogeneous rock properties. Geophysics, 71(3): O1-O8.
  8. Castagna, J.P., Swan, H.W. and Foster, J.D., 1998. Framework for AVO gradient andintercept interpretation. Geophysics, 63: 948-56.
  9. Chapman, M., Liu, E. and Li, X.Y., 2005. The influence of abnormally high reservoirattenuation on the AVO signature. The Leading Edge, 24: 1120-1125.
  10. Chapman, M., Liu, E. and Li, X.Y., 2006. The influence of fluid sensitive dispersion andattenuation on AVO analysis. Geophys. J. Internat., 167: 89-105.
  11. Chapman, M., Maultzsch, S., Liu, E. and Li, X.Y., 2003. The effect of fluid saturation inan anisotropic multi-scale equant porosity model. J. Appl. Geophys., 54: 191-202.
  12. Chapman, M., Zatsepin, S.V. and Crampin, S., 2002. Derivation of a microstructuralporoelastic model. Geophys. J. Internat., 151: 427-451.
  13. Chen, S.Q., Li, X.Y. and Wang, S.X., 2012. The analysis of frequency-dependentcharacteristics for fluid detection: a physical model experiment. Appl. Geophys., 9:195-206.hen, S.Q., Li, X.Y. and Wu, X.Y., 2014. Application of frequency-dependent AVOinversion to hydrocarbon detection. J. Seismic Explor., 23: 241-264.hen, X.H., He, Z.H. and Huang, D.J., 2008. Generalized S-transform and itstime-frequency filtering. Signal Process., 24: 28-31.hen, X.H., He, Z.H., Pei, X.G., Zhong, W.L. and Yang, W., 2013. Numerical simulationof frequency-dependent seismic response and gas reservoir delineation in turbidites: Acase study from China. J. Appl. Geophys., 94: 22-30.
  14. Chen, X.H., Zhong, W.L., He, Z.H. and Zou, W., 2016. Frequency-dependent attenuationof compressional wave and seismic effects in porous reservoirs saturated withmulti-phase fluids. J. Petrol. Sci. Engineer., 147: 371-380.
  15. Chen, X.H., Zhong, W.L., Gao, G., Zou, W. and He, Z.H., 2017. Numerical analysis of
  16. Velocity dispersion in multi-phase fluid-saturated porous rocks. Pure Appl. Geophys.,174: 1219-1235.
  17. Cheng, B.J., Xu, T.J. and Li, S.G., 2012. Research and application of frequencydependent AVO analysis for gas recognition. Chin. J. Geophys., 55: 608-613.
  18. Dupuy, B. and Stovas, A., 2014. Influence of frequency and saturation on AVO attributesfor patchy saturated rocks. Geophysics, 79(1): B19-B36.
  19. Dvorkin, J.. Mavko, G. and Nur, A., 1995. Squirt flow in fully saturated rocks.Geophysics, 60: 97-107.
  20. Gary, D., 2002. Elastic inversion for Lame parameters. Expanded Abstr., 72nd Ann.Internat. SEG Mtg., Salt Lake city: 213-216.
  21. Gazdag, B. and Sguazzero, P., 1984. Migration of seismic data by phase-shift plusinterpolation. Geophysics, 49: 124-131.
  22. Ghosal, D. and Juhlin, C., 2018. Estimation of dispersion attributes at seismic frequency -a case study from the Frigg-Delta reservoir, North Sea. J. Geophys. Engineer., 15:1799-1810.Qaa0a
  23. Gurevich, B., Makarynska, D., Paula, O.B. and Pervukhina, M., 2010. A simple modelfor squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics,75(6): N109-N120
  24. Johnson, D.L., 2001. Theory of frequency-dependent acoustics in patch saturated porousmedia. J. Acoust. Soc. Am., 110: 682-694.
  25. Korneev, V.A., Goloshubin, G.M., Daley, T.M. and Silin, D.M., 2004. Seismic lowfrequency effects in monitoring fluid-saturated reservoirs. Geophysics, 69: 522-532.
  26. Liu, L.F., Cao, S.Y. and Wang, L., 2011. Poroelastic analysis of frequency-dependentamplitude-versus-offset variations. Geophysics, 76(3): C31-C40.
  27. Mavko, G., Mukerji, T. and Dvorkin, J., 2009. The Rock Physics Handbook, 2nd ed.Cambridge University Press, Cambridge.
  28. Miller, T. M., Gurevich, B. and Lebedev, M., 2010. Seismic wave attenuation anddispersion resulting from wave-induced flow in porous rocks - a review. Geophysics,75(5): A147-A164.de Paula, O., Pervukhina, M., Makarynska, D. and Gurevich, B., 2012. Modeling squirtdispersion and attenuation in fluid-saturated rocks using pressure dependency of dryultrasonic velocities. Geophysics, 77(3): WA157-WA168.
  29. Pride, S.R. and Berryman, J.G., 2003a. Linear dynamics of double-porosity dualpermeability materials: Part 1 - Governing equations and acoustic attenuation. Phys.Rev. E, 68: 036603.
  30. Pride, S.R. and Berryman, J. G., 2003b. Linear dynamics of double-porosity dualpermeability materials: Part 2 - Fluid transport equations. Phys. Rev. E, 68: 036604
  31. Quintal, B., 2012. Frequency-dependent attenuation as a potential indicator of oilsaturation. J. Appl. Geophys., 82: 119-128.
  32. Rubino, J.G. and Holliger, K., 2012. Seismic attenuation and velocity dispersion inheterogeneous partially saturated porous rocks. Geophys. J. Internat., 188: 1088-1102.
  33. Russell, B. H., Hedlin, K. and Hilterman, F. J., 2003. Fluid-property discrimination with
  34. AVO: a Biot-Gassmann perspective. Geophysics, 68: 29-39.
  35. Russell, B.H., Gray, D. and Hampson, D.P., 2011. Linearized AVO and poroelasticity.Geophysics, 76(3): C19-C29.
  36. Silin, D.B. and Goloshubin, G., 2010. An asymptotic model of seismic reflection from apermeable layer. Transp. Porous Media, 83: 233-256.
  37. Silin, D.B., Korneev, V.M., Goloshubin, G.M. and Patzek, T.W., 2006. Low-frequencyasymptotic analysis of seismic reflection from a fluid-saturated medium. Transp.Porous Media, 62: 283-305.
  38. Smith, G. C. and Gidlow, P. M., 1987. Weighted stacking for rock property estimationand detection of gas. Geophys. Prosp., 35: 993-1014.
  39. White, J.E., 1975. Computed seismic speeds and attenuation in rocks with partial gassaturation. Geophysics, 40: 224-232.
  40. Wiggins, R., Kenny, G.S. and McClure, C.D., 1983. A method for determining anddisplaying the shear wave reflectivities of a geologic formation. Europ. PatentApplicat.: 0113944.
  41. Wilson, A., Chapman, M. and Li, X.Y., 2009. Frequency-dependent AVO inversion.
  42. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston, 28: 341-345.
  43. Wu, X.Y., Chapman, M. and Li, X.Y., 2012. Frequency-dependent AVO attribute:Theory and example. First break, 30: 67-72.
  44. Wu, X.Y., Chapman, M., Li, X.Y. and Boston, P., 2014. Quantitative gas saturationestimation by frequency-dependent amplitude versus-offset analysis. Geophys. Prosp.,62: 1224-1237.
  45. Xu, D., Wang, Y.H., Gan, Q.G. and Tang, J.M., 2011. Frequency-dependent seismicreflection coefficient for discriminating gas reservoirs. J. Geophys. Engineer., 8:508-513.
  46. Yang, J.D. and Zhu, H.J., 2018. A time-domain complex-valued wave equation formodeling viscoacoustic wave propagation. Geophys. J. Internat., 215: 1064-1079.
  47. Yang, J.D. and Zhu, H.J., 2018. Viscoacoustic reverse time migration using atime-domain complex-valued wave equation. Geophysics, 83(6): S505-S519.
  48. Zhang, S.X, Yin, X.Y. and Zhang, G.Z., 2011. Dispersion-dependent attribute andapplication in hydrocarbon detection. J. Geophys. Engineer., 8: 498-507.
  49. Zhang, Z., Yin, X.Y. and Hao, Q.Y., 2014. Frequency-dependent fluid identificationmethod based on AVO inversion. Chin. J. Geophys., 57: 4171-4184.
  50. Zhong, W.L., Chen, X.H., Luo, X., Jiang, W. and Yang, W., 2017. Amplitudenon-sensitive stratal dispersion shadow for dim spot reservoir delineation. Acta Geol.Sin. (Engl. ed.), 91: 1513-1514.
  51. Zong, Z.Y., Yin, X.Y. and Wu, G.C., 2016. Frequency dependent elastic impedanceinversion for interstratified dispersive elastic parameters. J. Appl. Geophys., 131:84-93.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing