ARTICLE

Seismic data denoising using double sparsity dictionary and alternating direction method of multipliers

LIANG ZHANG1,2 LIGUO HAN1 AO CHANG1 JINWEI FANG3 PAN ZHANG1 YONG HU1 ZHENGGUANG LIU2
Show Less
1 College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, P.R. China.,
2 Institute of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, P.R. China.,
3 CNPC Key Lab of Geophysical Exploration, China University of Petroleum-Beijing, Beijing 102249, P.R. China.,
JSE 2020, 29(1), 49–71;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhang, L., Han, L.G., Chang, A., Fang, J.W., Zhang, P., Hu, Y. and Liu, Z.G., 2020. Seismic data denoising using double sparsity dictionary and alternating direction method of multipliers. Journal of Seismic Exploration, 29: 49-71. Recently, the dictionary learning plays a more and more important role in seismic ata denoising. Compared with the fixed-basis transform (e.g., Fourier transform, wavelet ansform, curvelet transform, contourlet transform and shearlet transform), the denoising f dictionary learning is better because of adaptive sparse representation of seismic data. owever, dictionary learning often produces artifacts due to no prior-constraint structural nformation. In this paper, we propose a new denoising approach, which has double sparsity and combines the advantage of fixed-basis transform and dictionary learning. The whole work-flow of the new denoising approach is as follows. Firstly, we can obtain sparse coefficients of seismic data via shearlet transform. Secondly, sparse coefficients are divided into some suitable size blocks which are regarded as training sets. Thirdly, the alternating direction method of multipliers (ADMM) is used in sparse coding to update ictionary coefficients. Then, the data-driven tight frame (DDTF) is used in dictionary updating to update dictionary atoms. Again, the ADMM is used to resolve the convex optimization problem, and we reshape output blocks to obtain new sparse coefficients. Finally, the hard-thresholding and inverse shearlet transform are applied to new sparse oefficients to achieve denoising. The synthetic data and field data experiments show that e new denoising approach obtain better result than fixed-basis transform and dictionary earning. In conclusion, the new denoising approach can attenuate artifacts and improve e quality of seismic data denoising.

Keywords
seismic data denoising
shearlet transform
DDTF
ADMM
References
  1. Aharon, M., Elad, M. and Bruckstein, A., 2006. $ rm k $-SVD: An algorithm for
  2. designing overcomplete dictionaries for sparse representation. IEEE Transact.
  3. Sign. Process., 54: 4311-4322.
  4. Anvari, R., Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R. and Mohammadi, ?? 2017.
  5. Seismic random noise attenuation using synchrosqueezed wavelet transform and
  6. low-rank signal matrix approximation. IEEE Transact. Geosci. Remote Sens., 55:
  7. 6574-6581.
  8. Bertsekas, D.P., 1999. Nonlinear Programming. Belmont: Athena Scientific, Boston, MA.
  9. Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J., 2011. Distributed optimization
  10. and statistical learning via the alternating direction method of multipliers. Foundat.
  11. Trends Mach. Learn., 3: 1-122.
  12. Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic
  13. waveform inversion. Geophysics, 60: 1457-1473.
  14. Cai, J.F., Ji, H., Shen, Z. and Ye, G.B., 2014. Data-driven tight frame construction and
  15. image denoising. Appl. Computat. Harm. Analys., 37: 89-105.
  16. Cao, J., Zhao, J. and Hu, Z., 2015. 3D seismic denoising based on a low-redundancy
  17. curvelet transform. J. Geophys. Engineer., 12: 566.
  18. Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-source
  19. seismic data using seislet-domain shaping regularization. Geophysics, 79(5):
  20. V179-V 189.
  21. Chen, Y., Zhang, L. and Mo, L., 2015. Seismic data interpolation using nonlinear
  22. shaping regularization. J. Seismic Explor., 24: 327-342.
  23. Chen, Y., Ma, J. and Fomel, S., 2016. Double-sparsity dictionary for seismic noise
  24. attenuation. Geophysics, 81(2): V103-V116.
  25. Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional
  26. seismic data. Geophys. J. Internat., 209: 21-31.
  27. Donoho, D.L., 2006. For most large underdetermined systems of linear equations the
  28. minimal 11-norm near-solution is also the sparsest solution. Communic. Pure Appl.
  29. Mathemat., 59: 797-829.
  30. Easley, G.R., Labate, D. and Lim, W.Q., 2008. Sparse directional image representations
  31. using the discrete shearlet transform. Appl. Computat. Harm. Analys., 25: 25-46.
  32. Gaci, S., 2014. The use of wavelet-based denoising techniques to enhance the
  33. first-arrival picking on seismic traces. IEEE Transact. Geosci. Remote Sens., 58:
  34. 4558-4563.
  35. Gan, S., Wang, S., Chen, Y., Zhang, Y., and Jin, Z., 2015. Dealiased seismic data
  36. interpolation using seislet transform with low-frequency constraint. IEEE Geosci.
  37. Remote Sens. Lett., 12: 2150-2154.
  38. Giiltinay, N., 2003. Seismic trace interpolation in the Fourier transform domain.
  39. Geophysics, 68: 355-369.
  40. Hagen, D.C., 1982. The application of principal components analysis to seismic data
  41. sets. Geoexplor., 20: 93-111.
  42. Hauser, S. and Steidl, G., 2013. Convex multiclass segmentation with shearlet
  43. regularization. Internat. J. Comput. Mathemat., 90: 62-81.
  44. Hou, S., Zhang, F., Li, X., Zhao, Q. and Dai, H., 2018. Simultaneous multi-component
  45. seismic denoising and reconstruction via K-SVD. J. Geophys. Engineer., 15: 681.
  46. Hunt, L., Downton, J., Reynolds, S., Hadley, S., Trad, D. and Hadley, M., 2010. The
  47. effect of interpolation on imaging and AVO: A Viking case study. Geophysics, 75(6):
  48. WB265-WB274.
  49. Karbalaali, H., Javaherian, A., Dahlke, S. and Torabi, S., 2017. Channel boundary
  50. detection based on 2D shearlet transformation: An application to the seismic data in
  51. the South Caspian Sea. J. Appl. Geophys., 146: 67-79.
  52. Kong, D. and Peng, Z., 2015. Seismic random noise attenuation using shearlet and
  53. total generalized variation. J. Geophys. Engineer., 12: 1024.
  54. Li, Q. and Gao, J., 2013. Contourlet based seismic reflection data non-local noise
  55. suppression. J. Appl. Geophys., 95: 16-22.
  56. Liang, J., Ma, J. and Zhang, X., 2014. Seismic data restoration via data-driven tight
  57. frame. Geophysics, 79(3): V65-V74.
  58. Liu, Y., Liu, C. and Wang, D., 2008. A 1D time-varying median filter for seismic
  59. random, spike-like noise elimination. Geophysics, 74(1): V17-V24.
  60. Liu, Y. and Fomel, S., 2013. Seismic data analysis using local time-frequency
  61. decomposition. Geophys. Prosp., 61: 516-525.
  62. Liu, W., Cao, S. and Chen, Y., 2016a. Seismic time-frequency analysis via empirical
  63. wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
  64. Liu, W., Cao, S., Chen, Y. and Zu, S., 2016b. An effective approach to attenuate
  65. random noise based on compressive sensing and curvelet transform. J. Geophys.
  66. Engineer., 13: 135.
  67. Liu, J., Chou, Y. and Zhu, J., 2018. Interpolating seismic data via the POCS method
  68. based on shearlet transform. J. Geophys. Engineer., 15: 852-876.
  69. Mousavi, S.M. and Langston, C.A., 2016. Hybrid seismic denoising using
  70. higher-order statistics and improved wavelet block thresholding. Bull. Seismol.
  71. Soc. Am., 106: 1380-1393.
  72. Nalla, P.R. and Chalavadi, K.M., 2015. Iris classification based on sparse
  73. representations using on-line dictionary learning for large-scale de-duplication
  74. applications. Springer Plus, 4: 238.
  75. Ophir, B., Lustig, M. and Elad, M., 2011. Multi-scale dictionary learning using
  76. wavelets. IEEE J. Select. Topics Sign. Process., 5: 1014-1024.
  77. Ramaswami, S., Kawaguchi, Y., Takashima, R., Endo, T. and Togami, M., 2017.
  78. ADMM-based audio reconstruction for low-cost-sound-monitoring. 25th Europ.Sign.
  79. Process. Conf, (EUSIPCO). doi:10.23919/EUSIPCO.2017.8081410|
  80. Rubinstein, R., Zibulevsky, M. and Elad, M., 2010. Double sparsity: Learning sparse
  81. dictionaries for sparse signal approximation. IEEE Transact. Sign. Process., 58:
  82. 1553-1564.
  83. Sacchi, M.D. and Liu, B., 2005. Minimum weighted norm wavefield reconstruction
  84. for AVA imaging. Geophys. Prosp., 53: 787-801.
  85. Siahsar, M.A.N., Gholtashi, S., Torshizi, E.O., Chen, W. and Chen, Y., 2017.
  86. Simultaneous denoising and interpolation of 3D seismic data via damped data-driven
  87. optimal singular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  88. Tang, G., Ma, J.W. and Yang, H.Z., 2012. Seismic data denoising based on
  89. learning-type overcomplete dictionaries. Appl. Geophys., 9: 27-32.
  90. Tong, Q., Sun, Z., Nie, Z., Lin, Y. and Cao, J., 2016. Sparse decomposition based on
  91. ADMM dictionary learning for fault feature extraction of rolling element bearing. J.
  92. Vibroengineer., 18: 5204-5216.
  93. Ursin, B. and Zheng, Y., 1985. Identification of seismic reflections using singular value
  94. decomposition. Geophys. Prosp., 33: 773-799.
  95. Vassiliou, A.A. and Garossino, P., 1998. Time-frequency processing and analysis of
  96. seismic data using very short-time Fourier transforms. U.S. Patent 5,850,622.
  97. Wang, Z., Zhang, B., Gao, J., Wang, Q. and Liu H., 2017. Wavelet transform with
  98. generalized beta wavelets for seismic time-frequency analysis. Geophysics, 82(4):
  99. 047-056.
  100. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S. and Ma, Y., 2009. Robust face
  101. recognition via sparse representation. IEEE Transact. Pattern Analys. Mach.
  102. Intellig., 31: 210-227.
  103. 灰 小 偷 12/18/19 2:00 PM
  104. Comment [1]: | am so sorry that | can not find
  105. the IEEE title and the volume. | find this
  106. reference in this website:
  107. https://ieeexplore.ieee.org/document/808141
  108. And | use this website's citation function. ls
  109. this format right?
  110. Wu, L. and Castagna, J.P., 2017. S-transform and Fourier transform frequency spectra of
  111. broadband seismic signals. Geophysics, 82(5): 071-081.
  112. Xu, S., Zhang, Y. and Lambaré G., 2010. Antileakage Fourier transform for seismic
  113. data regularization in higher dimensions. Geophysics, 75(6): WB113-WB120.
  114. Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterative
  115. deblending of simultaneous source seismic data using high-order Radon transform. J.
  116. Appl. Geophys., 139: 79-90.
  117. Yang, H., Long, Y., Lin, J., Zhang, F. and Chen, Z., 2017. A seismic interpolation and
  118. denoising method with curvelet transform matching filter. Acta Geophys., 65:
  119. 1029-1042.
  120. Yi, S., Labate, D., Easley, G.R. and Krim, H., 2009. A shearlet approach to edge
  121. analysis and detection. IEEE Transact. Image Process., 18: 929-941.
  122. Yu, S., Ma, J., Zhang, X. and Sacchi, M.D., 2015. Interpolation and denoising of
  123. high-dimensional seismic data by learning a tight frame. Geophysics, 80(5):
  124. V119-V132.
  125. Yu, S., Ma, J. and Osher, S., 2016. Monte Carlo data-driven tight frame for seismic data
  126. recovery. Geophysics, 81(4): V327-V340.
  127. Zhao, Q. and Du, Q., 2017. Constrained data-driven tight frame for robust seismic data
  128. reconstruction. Expanded Abstr., 87th Ann. Internat. SEG Mtg., Houston: 4246-4250.
  129. Zhao, X., Li, Y., Zhuang, G., Zhang, C. and Han, X., 2016. 2-D TFPF based on
  130. Contourlet transform for seismic random noise attenuation. J. Appl. Geophys., 129:
  131. 158-166.
  132. Zhu, L., Liu, E. and McClellan, J.H., 2015. Seismic data denoising through multiscale
  133. and sparsity-promoting dictionary learning. Geophysics, 80(6): WD45-WD57.
  134. Zhuang, G., Li, Y., Liu, Y., Lin, H., Ma, H., and Wu, N., 2014. Varying-window-length
  135. TFPF in high-resolution Radon domain for seismic random noise attenuation. IEEE
  136. Geosci. Remote Sens. Lett., 12: 404-408.
  137. Zou, H., Hastie, T. and Tibshirani, R., 2006. Sparse principal component analysis. J.
  138. Computat. Graphic. Statist., 15: 265-286.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing