Seismic data denoising using double sparsity dictionary and alternating direction method of multipliers

Zhang, L., Han, L.G., Chang, A., Fang, J.W., Zhang, P., Hu, Y. and Liu, Z.G., 2020. Seismic data denoising using double sparsity dictionary and alternating direction method of multipliers. Journal of Seismic Exploration, 29: 49-71. Recently, the dictionary learning plays a more and more important role in seismic ata denoising. Compared with the fixed-basis transform (e.g., Fourier transform, wavelet ansform, curvelet transform, contourlet transform and shearlet transform), the denoising f dictionary learning is better because of adaptive sparse representation of seismic data. owever, dictionary learning often produces artifacts due to no prior-constraint structural nformation. In this paper, we propose a new denoising approach, which has double sparsity and combines the advantage of fixed-basis transform and dictionary learning. The whole work-flow of the new denoising approach is as follows. Firstly, we can obtain sparse coefficients of seismic data via shearlet transform. Secondly, sparse coefficients are divided into some suitable size blocks which are regarded as training sets. Thirdly, the alternating direction method of multipliers (ADMM) is used in sparse coding to update ictionary coefficients. Then, the data-driven tight frame (DDTF) is used in dictionary updating to update dictionary atoms. Again, the ADMM is used to resolve the convex optimization problem, and we reshape output blocks to obtain new sparse coefficients. Finally, the hard-thresholding and inverse shearlet transform are applied to new sparse oefficients to achieve denoising. The synthetic data and field data experiments show that e new denoising approach obtain better result than fixed-basis transform and dictionary earning. In conclusion, the new denoising approach can attenuate artifacts and improve e quality of seismic data denoising.
- Aharon, M., Elad, M. and Bruckstein, A., 2006. $ rm k $-SVD: An algorithm for
- designing overcomplete dictionaries for sparse representation. IEEE Transact.
- Sign. Process., 54: 4311-4322.
- Anvari, R., Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R. and Mohammadi, ?? 2017.
- Seismic random noise attenuation using synchrosqueezed wavelet transform and
- low-rank signal matrix approximation. IEEE Transact. Geosci. Remote Sens., 55:
- 6574-6581.
- Bertsekas, D.P., 1999. Nonlinear Programming. Belmont: Athena Scientific, Boston, MA.
- Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J., 2011. Distributed optimization
- and statistical learning via the alternating direction method of multipliers. Foundat.
- Trends Mach. Learn., 3: 1-122.
- Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic
- waveform inversion. Geophysics, 60: 1457-1473.
- Cai, J.F., Ji, H., Shen, Z. and Ye, G.B., 2014. Data-driven tight frame construction and
- image denoising. Appl. Computat. Harm. Analys., 37: 89-105.
- Cao, J., Zhao, J. and Hu, Z., 2015. 3D seismic denoising based on a low-redundancy
- curvelet transform. J. Geophys. Engineer., 12: 566.
- Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-source
- seismic data using seislet-domain shaping regularization. Geophysics, 79(5):
- V179-V 189.
- Chen, Y., Zhang, L. and Mo, L., 2015. Seismic data interpolation using nonlinear
- shaping regularization. J. Seismic Explor., 24: 327-342.
- Chen, Y., Ma, J. and Fomel, S., 2016. Double-sparsity dictionary for seismic noise
- attenuation. Geophysics, 81(2): V103-V116.
- Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional
- seismic data. Geophys. J. Internat., 209: 21-31.
- Donoho, D.L., 2006. For most large underdetermined systems of linear equations the
- minimal 11-norm near-solution is also the sparsest solution. Communic. Pure Appl.
- Mathemat., 59: 797-829.
- Easley, G.R., Labate, D. and Lim, W.Q., 2008. Sparse directional image representations
- using the discrete shearlet transform. Appl. Computat. Harm. Analys., 25: 25-46.
- Gaci, S., 2014. The use of wavelet-based denoising techniques to enhance the
- first-arrival picking on seismic traces. IEEE Transact. Geosci. Remote Sens., 58:
- 4558-4563.
- Gan, S., Wang, S., Chen, Y., Zhang, Y., and Jin, Z., 2015. Dealiased seismic data
- interpolation using seislet transform with low-frequency constraint. IEEE Geosci.
- Remote Sens. Lett., 12: 2150-2154.
- Giiltinay, N., 2003. Seismic trace interpolation in the Fourier transform domain.
- Geophysics, 68: 355-369.
- Hagen, D.C., 1982. The application of principal components analysis to seismic data
- sets. Geoexplor., 20: 93-111.
- Hauser, S. and Steidl, G., 2013. Convex multiclass segmentation with shearlet
- regularization. Internat. J. Comput. Mathemat., 90: 62-81.
- Hou, S., Zhang, F., Li, X., Zhao, Q. and Dai, H., 2018. Simultaneous multi-component
- seismic denoising and reconstruction via K-SVD. J. Geophys. Engineer., 15: 681.
- Hunt, L., Downton, J., Reynolds, S., Hadley, S., Trad, D. and Hadley, M., 2010. The
- effect of interpolation on imaging and AVO: A Viking case study. Geophysics, 75(6):
- WB265-WB274.
- Karbalaali, H., Javaherian, A., Dahlke, S. and Torabi, S., 2017. Channel boundary
- detection based on 2D shearlet transformation: An application to the seismic data in
- the South Caspian Sea. J. Appl. Geophys., 146: 67-79.
- Kong, D. and Peng, Z., 2015. Seismic random noise attenuation using shearlet and
- total generalized variation. J. Geophys. Engineer., 12: 1024.
- Li, Q. and Gao, J., 2013. Contourlet based seismic reflection data non-local noise
- suppression. J. Appl. Geophys., 95: 16-22.
- Liang, J., Ma, J. and Zhang, X., 2014. Seismic data restoration via data-driven tight
- frame. Geophysics, 79(3): V65-V74.
- Liu, Y., Liu, C. and Wang, D., 2008. A 1D time-varying median filter for seismic
- random, spike-like noise elimination. Geophysics, 74(1): V17-V24.
- Liu, Y. and Fomel, S., 2013. Seismic data analysis using local time-frequency
- decomposition. Geophys. Prosp., 61: 516-525.
- Liu, W., Cao, S. and Chen, Y., 2016a. Seismic time-frequency analysis via empirical
- wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
- Liu, W., Cao, S., Chen, Y. and Zu, S., 2016b. An effective approach to attenuate
- random noise based on compressive sensing and curvelet transform. J. Geophys.
- Engineer., 13: 135.
- Liu, J., Chou, Y. and Zhu, J., 2018. Interpolating seismic data via the POCS method
- based on shearlet transform. J. Geophys. Engineer., 15: 852-876.
- Mousavi, S.M. and Langston, C.A., 2016. Hybrid seismic denoising using
- higher-order statistics and improved wavelet block thresholding. Bull. Seismol.
- Soc. Am., 106: 1380-1393.
- Nalla, P.R. and Chalavadi, K.M., 2015. Iris classification based on sparse
- representations using on-line dictionary learning for large-scale de-duplication
- applications. Springer Plus, 4: 238.
- Ophir, B., Lustig, M. and Elad, M., 2011. Multi-scale dictionary learning using
- wavelets. IEEE J. Select. Topics Sign. Process., 5: 1014-1024.
- Ramaswami, S., Kawaguchi, Y., Takashima, R., Endo, T. and Togami, M., 2017.
- ADMM-based audio reconstruction for low-cost-sound-monitoring. 25th Europ.Sign.
- Process. Conf, (EUSIPCO). doi:10.23919/EUSIPCO.2017.8081410|
- Rubinstein, R., Zibulevsky, M. and Elad, M., 2010. Double sparsity: Learning sparse
- dictionaries for sparse signal approximation. IEEE Transact. Sign. Process., 58:
- 1553-1564.
- Sacchi, M.D. and Liu, B., 2005. Minimum weighted norm wavefield reconstruction
- for AVA imaging. Geophys. Prosp., 53: 787-801.
- Siahsar, M.A.N., Gholtashi, S., Torshizi, E.O., Chen, W. and Chen, Y., 2017.
- Simultaneous denoising and interpolation of 3D seismic data via damped data-driven
- optimal singular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
- Tang, G., Ma, J.W. and Yang, H.Z., 2012. Seismic data denoising based on
- learning-type overcomplete dictionaries. Appl. Geophys., 9: 27-32.
- Tong, Q., Sun, Z., Nie, Z., Lin, Y. and Cao, J., 2016. Sparse decomposition based on
- ADMM dictionary learning for fault feature extraction of rolling element bearing. J.
- Vibroengineer., 18: 5204-5216.
- Ursin, B. and Zheng, Y., 1985. Identification of seismic reflections using singular value
- decomposition. Geophys. Prosp., 33: 773-799.
- Vassiliou, A.A. and Garossino, P., 1998. Time-frequency processing and analysis of
- seismic data using very short-time Fourier transforms. U.S. Patent 5,850,622.
- Wang, Z., Zhang, B., Gao, J., Wang, Q. and Liu H., 2017. Wavelet transform with
- generalized beta wavelets for seismic time-frequency analysis. Geophysics, 82(4):
- 047-056.
- Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S. and Ma, Y., 2009. Robust face
- recognition via sparse representation. IEEE Transact. Pattern Analys. Mach.
- Intellig., 31: 210-227.
- 灰 小 偷 12/18/19 2:00 PM
- Comment [1]: | am so sorry that | can not find
- the IEEE title and the volume. | find this
- reference in this website:
- https://ieeexplore.ieee.org/document/808141
- And | use this website's citation function. ls
- this format right?
- Wu, L. and Castagna, J.P., 2017. S-transform and Fourier transform frequency spectra of
- broadband seismic signals. Geophysics, 82(5): 071-081.
- Xu, S., Zhang, Y. and Lambaré G., 2010. Antileakage Fourier transform for seismic
- data regularization in higher dimensions. Geophysics, 75(6): WB113-WB120.
- Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterative
- deblending of simultaneous source seismic data using high-order Radon transform. J.
- Appl. Geophys., 139: 79-90.
- Yang, H., Long, Y., Lin, J., Zhang, F. and Chen, Z., 2017. A seismic interpolation and
- denoising method with curvelet transform matching filter. Acta Geophys., 65:
- 1029-1042.
- Yi, S., Labate, D., Easley, G.R. and Krim, H., 2009. A shearlet approach to edge
- analysis and detection. IEEE Transact. Image Process., 18: 929-941.
- Yu, S., Ma, J., Zhang, X. and Sacchi, M.D., 2015. Interpolation and denoising of
- high-dimensional seismic data by learning a tight frame. Geophysics, 80(5):
- V119-V132.
- Yu, S., Ma, J. and Osher, S., 2016. Monte Carlo data-driven tight frame for seismic data
- recovery. Geophysics, 81(4): V327-V340.
- Zhao, Q. and Du, Q., 2017. Constrained data-driven tight frame for robust seismic data
- reconstruction. Expanded Abstr., 87th Ann. Internat. SEG Mtg., Houston: 4246-4250.
- Zhao, X., Li, Y., Zhuang, G., Zhang, C. and Han, X., 2016. 2-D TFPF based on
- Contourlet transform for seismic random noise attenuation. J. Appl. Geophys., 129:
- 158-166.
- Zhu, L., Liu, E. and McClellan, J.H., 2015. Seismic data denoising through multiscale
- and sparsity-promoting dictionary learning. Geophysics, 80(6): WD45-WD57.
- Zhuang, G., Li, Y., Liu, Y., Lin, H., Ma, H., and Wu, N., 2014. Varying-window-length
- TFPF in high-resolution Radon domain for seismic random noise attenuation. IEEE
- Geosci. Remote Sens. Lett., 12: 404-408.
- Zou, H., Hastie, T. and Tibshirani, R., 2006. Sparse principal component analysis. J.
- Computat. Graphic. Statist., 15: 265-286.