ARTICLE

The finite difference contrast source inversion with super memory hybrid conjugate gradient method

DOUDOU WANG SHOUDONG WANG HONGLIANG LI
Show Less
China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resource and Prospecting; National Engineering Laboratory of Offshore Oil Exploration; CNPC Key Laboratory of Geophysical Exploration, Beijing, P.R.China,
JSE 2020, 29(1), 73–97;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, D.D., Wang, S.D. and Li, H.L., 2020. The finite difference contrast source inversion with super memory hybrid conjugate gradient method. Journal of Seismic Exploration, 29: 73-97. The finite difference contrast source inversion (FDCSD is an algorithm to solve the wave equation inverse scattering problem. This algorithm’s forward operator is only related to the background medium, which does not change during the iterative optimization process. Therefore, an LU decomposition is required only once for the forward operator, which has lower computation cost. Because of finite difference operator, FDCSI can be applied to inhomogeneous background medium. FDCSI transforms the inverse scattering problem of wave equation into an optimization problem, which can be solved by conjugate gradient method. But conventional conjugate gradient method converges slowly, which affects computing efficiency, and the Newton method increases computation and memory. In order to improve the convergence speed for frequency domain acoustic equation, the super memory hybrid conjugate gradient method (SMHCG) is introduced into FDCSI. SMHCG is improved on the basis of the super memory gradient method to adapt to FDCSI. SMHCG accelerates the convergence of objective function without any increase computation and memory. The advantages of SMHCG had been verified on the Marmousi model.

Keywords
contrast source inversion
scattering
super memory hybrid conjugate gradient method
full waveform inversion
References
  1. Abubakar, A., Hu, W., van den Berg, P.M. and Habashy, T.M., 2008. A finite-difference
  2. contrast source inversion method. Inverse Probl., 24: 065004-065020.
  3. Abubakar, A., Hu, W., Habashy, T.M. and van den Berg, P.M., 2009. Application of the
  4. finite-difference contrast-source inversion algorithm to seismic full-waveform data.
  5. Geophysics, 74(6): WCC47-WCCS8.
  6. Abubakar, A., Pan, G.D., Li, M. and Zhang, L., 2011. Three-dimensional seismic
  7. full-waveform inversion using the finite-difference contrast source inversion method.
  8. Geophys. Prosp., 59: 874-888.
  9. Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic
  10. waves. Academic Press Professional, Inc.
  11. van den Berg, P.M. and Kleinman, R.E., 1997 A contrast source inversion method.
  12. Inverse Probl., 13: 1607-1620.
  13. van den Berg, P.M., van Broekhoven, A.L. and Abubakar, A., 1999. Extended contrast
  14. source inversion. Inverse Probl., 15: 1325-1344.
  15. Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore
  16. structures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6):
  17. WCC105-WCC118.
  18. Chi, B., Dong, L. and Liu, Y., 2014. Full waveform inversion method using envelope
  19. objective function without low frequency data. J. Appl. Geophys., 109: 36-46.
  20. Choi, Y., Shin, C., Min, D.J. and Ha, T., 2005. Efficient calculation of the steepest
  21. descent direction for source-independent seismic waveform inversion: An amplitude
  22. approach. J. Computat. Phys., 208: 455-468.
  23. Davis, T.A. and Duff, I.S., 2006. An unsymmetric-pattern multifrontal method for sparse
  24. LU factorization. Soc. Industr. Appl. Mathemat., 18: 140-158.
  25. van Dongen, K.W. and Wright, W.M., 2007. A full vectorial contrast source inversion
  26. scheme for three-dimensional acoustic imaging of both compressibility and density
  27. profiles. J. Acoust. Soc. Am., 121: 1538.
  28. Habashy, T.M., Oristaglio, M.L. and Hoop, A.T.D., 2016. Simultaneous nonlinear
  29. reconstruction of two-dimensional permittivity and conductivity. Radio Sci., 29:
  30. 1101-1118.
  31. Han, B., He, Q.L., Chen, Y. and Dou, Y.X., 2014. Seismic waveform inversion using the
  32. finite-difference contrast source inversion method. J. Appl. Mathemat., 10: 1-11.
  33. He, Q.L., Han, B., Chen, Y. and Li, Y., 2016. Application of the finite-difference contrast
  34. source inversion method to multiparameter reconstruction using seismic full-waveform
  35. data. J. Appl. Geophys., 124: 4-16.
  36. Hu, Y., Han, L.G., Zhang, P., Bai, L. and Zhang, T.Z., 2016. Hybrid super memory
  37. gradient method ull waveform inversion. Extended Abstr., 78th EAGE Conf., Vienna.
  38. Jo, C.H., Shin, C.S. and Suh, J.H., 1996. An optimal 9-point, finite-difference,
  39. frequency-space, 2-D scalar wave extrapolator. Geophysics, 61: 529-537.
  40. Kamei, R., Pratt, R.G. and Tsuji, T., 2015. Misfit functionals in Laplace-Fourier domain
  41. waveform inversion, with application to wide-angle ocean bottom seismograph data.
  42. Geophys. Prosp., 62: 1054-1074.
  43. Kim, W.K. and Min, D.J., 2014. A new parameterization for frequency-domain elastic
  44. full waveform inversion for VTI media. J. Appl. Geophys., 109: 88-110.
  45. Lysmer, J. and Drake, L.A., 1972. A Finite Element Method for Seismology. Methods
  46. Computat. Phys. Advan. Res. Applicat., 11: 181-216.
  47. Metivier, L., Brossier, R., Virieux, J. and Operto, S., 2015. Full waveform inversion and
  48. the Truncated Newton Method: quantitative imaging of complex subsurface structures.
  49. Geophys. Prosp., 62: 1353-1375.
  50. Ou, Y. and Liu, Y., 2013. A nonmonotone supermemory gradient algorithm for
  51. unconstrained optimization. J. Appl. Mathemat. Comput., 46: 215-235.
  52. Ou, Y. and Liu, Y., 2017. Supermemory gradient methods for monotone nonlinear
  53. equations with convex constraints. Computat. Appl. Mathemat., 36: 259-279.
  54. Pelekanos, G., Abubakar, A. and van den Berg, P.M., 2003. Contrast source inversion
  55. methods in elastodynamics. J. Acoust. Soc. Am., 114: 2825-2834.
  56. Pratt, R.G. and Worthington, M.H., 1990. Inverse theory applied to multi-source
  57. cross-hole tomography: Part 1. Acoustic wave-equation method. Geophys. Prosp., 38:
  58. 287-310.
  59. Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: theory
  60. and verification in a physical scale model. Geophysics, 64: 888-901.
  61. Pratt, R.G., Shin, C. and Hick, G.J., 1998. Gauss-Newton and full Newton methods in
  62. frequency space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
  63. Pratt, R.G. and Worthington, M.H., 1990. Inverse theory applied to multi-source
  64. cross-hole tomography Partl: acoustic wave equation method: Geophysical
  65. Prospecting, 38(3), 287-310.
  66. Shi, Z.J. and Shen, J., 2005. A new super-memory gradient method with curve search
  67. tule. Appl. Mathemat. Computat., 170: 1-16.
  68. Shin, C., 1995. Sponge boundary condition for frequency-domain modeling. Geophysics,
  69. 60: 1870-1874.
  70. Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategy
  71. for selecting temporal frequencies. Geophysics, 69: 231-248.
  72. Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.
  73. Geophysics, 51: 1893-1903.
  74. Ugeun, J., Min, D. and Shin, C.S., 2010. Comparison of scaling methods for waveform
  75. inversion. Geophys. Prosp., 57: 49-59.
  76. Wang, S.D., Wu, R.S. and Liu, Y.F., 2016. The contrast source inversion for reflection
  77. seismic data. Extended Abstr., 78th EAGE Conf., Vienna.
  78. Weng, C.C. and Weedon, W.H., 1994. A 3D perfectly matched medium from modified
  79. Maxwell's equations with stretched coordinates. Microw. Optic. Technol. Lett., 73:
  80. 599-604.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing