The finite difference contrast source inversion with super memory hybrid conjugate gradient method

Wang, D.D., Wang, S.D. and Li, H.L., 2020. The finite difference contrast source inversion with super memory hybrid conjugate gradient method. Journal of Seismic Exploration, 29: 73-97. The finite difference contrast source inversion (FDCSD is an algorithm to solve the wave equation inverse scattering problem. This algorithm’s forward operator is only related to the background medium, which does not change during the iterative optimization process. Therefore, an LU decomposition is required only once for the forward operator, which has lower computation cost. Because of finite difference operator, FDCSI can be applied to inhomogeneous background medium. FDCSI transforms the inverse scattering problem of wave equation into an optimization problem, which can be solved by conjugate gradient method. But conventional conjugate gradient method converges slowly, which affects computing efficiency, and the Newton method increases computation and memory. In order to improve the convergence speed for frequency domain acoustic equation, the super memory hybrid conjugate gradient method (SMHCG) is introduced into FDCSI. SMHCG is improved on the basis of the super memory gradient method to adapt to FDCSI. SMHCG accelerates the convergence of objective function without any increase computation and memory. The advantages of SMHCG had been verified on the Marmousi model.
- Abubakar, A., Hu, W., van den Berg, P.M. and Habashy, T.M., 2008. A finite-differencecontrast source inversion method. Inverse Probl., 24: 065004-065020.
- Abubakar, A., Hu, W., Habashy, T.M. and van den Berg, P.M., 2009. Application of thefinite-difference contrast-source inversion algorithm to seismic full-waveform data.Geophysics, 74(6): WCC47-WCCS8.
- Abubakar, A., Pan, G.D., Li, M. and Zhang, L., 2011. Three-dimensional seismicfull-waveform inversion using the finite-difference contrast source inversion method.Geophys. Prosp., 59: 874-888.
- Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagneticwaves. Academic Press Professional, Inc.van den Berg, P.M. and Kleinman, R.E., 1997 A contrast source inversion method.Inverse Probl., 13: 1607-1620.van den Berg, P.M., van Broekhoven, A.L. and Abubakar, A., 1999. Extended contrastsource inversion. Inverse Probl., 15: 1325-1344.
- Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshorestructures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6):WCC105-WCC118.
- Chi, B., Dong, L. and Liu, Y., 2014. Full waveform inversion method using envelopeobjective function without low frequency data. J. Appl. Geophys., 109: 36-46.
- Choi, Y., Shin, C., Min, D.J. and Ha, T., 2005. Efficient calculation of the steepestdescent direction for source-independent seismic waveform inversion: An amplitudeapproach. J. Computat. Phys., 208: 455-468.
- Davis, T.A. and Duff, I.S., 2006. An unsymmetric-pattern multifrontal method for sparse
- LU factorization. Soc. Industr. Appl. Mathemat., 18: 140-158.van Dongen, K.W. and Wright, W.M., 2007. A full vectorial contrast source inversionscheme for three-dimensional acoustic imaging of both compressibility and densityprofiles. J. Acoust. Soc. Am., 121: 1538.
- Habashy, T.M., Oristaglio, M.L. and Hoop, A.T.D., 2016. Simultaneous nonlinearreconstruction of two-dimensional permittivity and conductivity. Radio Sci., 29:1101-1118.
- Han, B., He, Q.L., Chen, Y. and Dou, Y.X., 2014. Seismic waveform inversion using thefinite-difference contrast source inversion method. J. Appl. Mathemat., 10: 1-11.
- He, Q.L., Han, B., Chen, Y. and Li, Y., 2016. Application of the finite-difference contrastsource inversion method to multiparameter reconstruction using seismic full-waveformdata. J. Appl. Geophys., 124: 4-16.
- Hu, Y., Han, L.G., Zhang, P., Bai, L. and Zhang, T.Z., 2016. Hybrid super memorygradient method ull waveform inversion. Extended Abstr., 78th EAGE Conf., Vienna.
- Jo, C.H., Shin, C.S. and Suh, J.H., 1996. An optimal 9-point, finite-difference,frequency-space, 2-D scalar wave extrapolator. Geophysics, 61: 529-537.
- Kamei, R., Pratt, R.G. and Tsuji, T., 2015. Misfit functionals in Laplace-Fourier domainwaveform inversion, with application to wide-angle ocean bottom seismograph data.Geophys. Prosp., 62: 1054-1074.
- Kim, W.K. and Min, D.J., 2014. A new parameterization for frequency-domain elasticfull waveform inversion for VTI media. J. Appl. Geophys., 109: 88-110.
- Lysmer, J. and Drake, L.A., 1972. A Finite Element Method for Seismology. Methods
- Computat. Phys. Advan. Res. Applicat., 11: 181-216.
- Metivier, L., Brossier, R., Virieux, J. and Operto, S., 2015. Full waveform inversion andthe Truncated Newton Method: quantitative imaging of complex subsurface structures.Geophys. Prosp., 62: 1353-1375.
- Ou, Y. and Liu, Y., 2013. A nonmonotone supermemory gradient algorithm forunconstrained optimization. J. Appl. Mathemat. Comput., 46: 215-235.
- Ou, Y. and Liu, Y., 2017. Supermemory gradient methods for monotone nonlinearequations with convex constraints. Computat. Appl. Mathemat., 36: 259-279.
- Pelekanos, G., Abubakar, A. and van den Berg, P.M., 2003. Contrast source inversionmethods in elastodynamics. J. Acoust. Soc. Am., 114: 2825-2834.
- Pratt, R.G. and Worthington, M.H., 1990. Inverse theory applied to multi-sourcecross-hole tomography: Part 1. Acoustic wave-equation method. Geophys. Prosp., 38:287-310.
- Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: theoryand verification in a physical scale model. Geophysics, 64: 888-901.
- Pratt, R.G., Shin, C. and Hick, G.J., 1998. Gauss-Newton and full Newton methods infrequency space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
- Pratt, R.G. and Worthington, M.H., 1990. Inverse theory applied to multi-sourcecross-hole tomography Partl: acoustic wave equation method: GeophysicalProspecting, 38(3), 287-310.
- Shi, Z.J. and Shen, J., 2005. A new super-memory gradient method with curve searchtule. Appl. Mathemat. Computat., 170: 1-16.
- Shin, C., 1995. Sponge boundary condition for frequency-domain modeling. Geophysics,60: 1870-1874.
- Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategyfor selecting temporal frequencies. Geophysics, 69: 231-248.
- Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.Geophysics, 51: 1893-1903.
- Ugeun, J., Min, D. and Shin, C.S., 2010. Comparison of scaling methods for waveforminversion. Geophys. Prosp., 57: 49-59.
- Wang, S.D., Wu, R.S. and Liu, Y.F., 2016. The contrast source inversion for reflectionseismic data. Extended Abstr., 78th EAGE Conf., Vienna.
- Weng, C.C. and Weedon, W.H., 1994. A 3D perfectly matched medium from modified
- Maxwell's equations with stretched coordinates. Microw. Optic. Technol. Lett., 73:599-604.