The finite difference contrast source inversion with super memory hybrid conjugate gradient method

Wang, D.D., Wang, S.D. and Li, H.L., 2020. The finite difference contrast source inversion with super memory hybrid conjugate gradient method. Journal of Seismic Exploration, 29: 73-97. The finite difference contrast source inversion (FDCSD is an algorithm to solve the wave equation inverse scattering problem. This algorithm’s forward operator is only related to the background medium, which does not change during the iterative optimization process. Therefore, an LU decomposition is required only once for the forward operator, which has lower computation cost. Because of finite difference operator, FDCSI can be applied to inhomogeneous background medium. FDCSI transforms the inverse scattering problem of wave equation into an optimization problem, which can be solved by conjugate gradient method. But conventional conjugate gradient method converges slowly, which affects computing efficiency, and the Newton method increases computation and memory. In order to improve the convergence speed for frequency domain acoustic equation, the super memory hybrid conjugate gradient method (SMHCG) is introduced into FDCSI. SMHCG is improved on the basis of the super memory gradient method to adapt to FDCSI. SMHCG accelerates the convergence of objective function without any increase computation and memory. The advantages of SMHCG had been verified on the Marmousi model.
- Abubakar, A., Hu, W., van den Berg, P.M. and Habashy, T.M., 2008. A finite-difference
- contrast source inversion method. Inverse Probl., 24: 065004-065020.
- Abubakar, A., Hu, W., Habashy, T.M. and van den Berg, P.M., 2009. Application of the
- finite-difference contrast-source inversion algorithm to seismic full-waveform data.
- Geophysics, 74(6): WCC47-WCCS8.
- Abubakar, A., Pan, G.D., Li, M. and Zhang, L., 2011. Three-dimensional seismic
- full-waveform inversion using the finite-difference contrast source inversion method.
- Geophys. Prosp., 59: 874-888.
- Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic
- waves. Academic Press Professional, Inc.
- van den Berg, P.M. and Kleinman, R.E., 1997 A contrast source inversion method.
- Inverse Probl., 13: 1607-1620.
- van den Berg, P.M., van Broekhoven, A.L. and Abubakar, A., 1999. Extended contrast
- source inversion. Inverse Probl., 15: 1325-1344.
- Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore
- structures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6):
- WCC105-WCC118.
- Chi, B., Dong, L. and Liu, Y., 2014. Full waveform inversion method using envelope
- objective function without low frequency data. J. Appl. Geophys., 109: 36-46.
- Choi, Y., Shin, C., Min, D.J. and Ha, T., 2005. Efficient calculation of the steepest
- descent direction for source-independent seismic waveform inversion: An amplitude
- approach. J. Computat. Phys., 208: 455-468.
- Davis, T.A. and Duff, I.S., 2006. An unsymmetric-pattern multifrontal method for sparse
- LU factorization. Soc. Industr. Appl. Mathemat., 18: 140-158.
- van Dongen, K.W. and Wright, W.M., 2007. A full vectorial contrast source inversion
- scheme for three-dimensional acoustic imaging of both compressibility and density
- profiles. J. Acoust. Soc. Am., 121: 1538.
- Habashy, T.M., Oristaglio, M.L. and Hoop, A.T.D., 2016. Simultaneous nonlinear
- reconstruction of two-dimensional permittivity and conductivity. Radio Sci., 29:
- 1101-1118.
- Han, B., He, Q.L., Chen, Y. and Dou, Y.X., 2014. Seismic waveform inversion using the
- finite-difference contrast source inversion method. J. Appl. Mathemat., 10: 1-11.
- He, Q.L., Han, B., Chen, Y. and Li, Y., 2016. Application of the finite-difference contrast
- source inversion method to multiparameter reconstruction using seismic full-waveform
- data. J. Appl. Geophys., 124: 4-16.
- Hu, Y., Han, L.G., Zhang, P., Bai, L. and Zhang, T.Z., 2016. Hybrid super memory
- gradient method ull waveform inversion. Extended Abstr., 78th EAGE Conf., Vienna.
- Jo, C.H., Shin, C.S. and Suh, J.H., 1996. An optimal 9-point, finite-difference,
- frequency-space, 2-D scalar wave extrapolator. Geophysics, 61: 529-537.
- Kamei, R., Pratt, R.G. and Tsuji, T., 2015. Misfit functionals in Laplace-Fourier domain
- waveform inversion, with application to wide-angle ocean bottom seismograph data.
- Geophys. Prosp., 62: 1054-1074.
- Kim, W.K. and Min, D.J., 2014. A new parameterization for frequency-domain elastic
- full waveform inversion for VTI media. J. Appl. Geophys., 109: 88-110.
- Lysmer, J. and Drake, L.A., 1972. A Finite Element Method for Seismology. Methods
- Computat. Phys. Advan. Res. Applicat., 11: 181-216.
- Metivier, L., Brossier, R., Virieux, J. and Operto, S., 2015. Full waveform inversion and
- the Truncated Newton Method: quantitative imaging of complex subsurface structures.
- Geophys. Prosp., 62: 1353-1375.
- Ou, Y. and Liu, Y., 2013. A nonmonotone supermemory gradient algorithm for
- unconstrained optimization. J. Appl. Mathemat. Comput., 46: 215-235.
- Ou, Y. and Liu, Y., 2017. Supermemory gradient methods for monotone nonlinear
- equations with convex constraints. Computat. Appl. Mathemat., 36: 259-279.
- Pelekanos, G., Abubakar, A. and van den Berg, P.M., 2003. Contrast source inversion
- methods in elastodynamics. J. Acoust. Soc. Am., 114: 2825-2834.
- Pratt, R.G. and Worthington, M.H., 1990. Inverse theory applied to multi-source
- cross-hole tomography: Part 1. Acoustic wave-equation method. Geophys. Prosp., 38:
- 287-310.
- Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: theory
- and verification in a physical scale model. Geophysics, 64: 888-901.
- Pratt, R.G., Shin, C. and Hick, G.J., 1998. Gauss-Newton and full Newton methods in
- frequency space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
- Pratt, R.G. and Worthington, M.H., 1990. Inverse theory applied to multi-source
- cross-hole tomography Partl: acoustic wave equation method: Geophysical
- Prospecting, 38(3), 287-310.
- Shi, Z.J. and Shen, J., 2005. A new super-memory gradient method with curve search
- tule. Appl. Mathemat. Computat., 170: 1-16.
- Shin, C., 1995. Sponge boundary condition for frequency-domain modeling. Geophysics,
- 60: 1870-1874.
- Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategy
- for selecting temporal frequencies. Geophysics, 69: 231-248.
- Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.
- Geophysics, 51: 1893-1903.
- Ugeun, J., Min, D. and Shin, C.S., 2010. Comparison of scaling methods for waveform
- inversion. Geophys. Prosp., 57: 49-59.
- Wang, S.D., Wu, R.S. and Liu, Y.F., 2016. The contrast source inversion for reflection
- seismic data. Extended Abstr., 78th EAGE Conf., Vienna.
- Weng, C.C. and Weedon, W.H., 1994. A 3D perfectly matched medium from modified
- Maxwell's equations with stretched coordinates. Microw. Optic. Technol. Lett., 73:
- 599-604.