ARTICLE

Suppression of high-amplitude noise via a t-x amplitude attenuation method

YIJUN YUAN1 XUEMIN WU2 CHUANZHIANG TANG3 YUE ZHIENG1 YUN WANG1
Show Less
1 School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, P.R. China. yyf@cugb.edu.cn,
2 Guangzhou Marine Geological Survey Bureau, Guangzhou 510075, P.R. China.,
3 Huabei Oilfield Company, Renqiu 062552, P.R. China.,
JSE 2019, 28(6), 533–550;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Yuan, Y., Wu, X.M., Tang, C.Z., Zheng, Y. and Wang, Y., 2019. Suppression of high-amplitude noise via a t-x amplitude attenuation method. Journal of Seismic Exploration, 28: 533-550. High-amplitude noise in seismic data, especially tape-generated high-amplitude noise which was caused by tape magnetic powder loss during the storage of seismic data, contaminates the dataset and leads to large noise event in the prestack migration. To attenuate high-amplitude noise and reduce the effect of strong-energy noise on prestack migration, we have developed a method for the attenuation of high-amplitude noise in shot gathers. Based on the characteristics of high-amplitude noise, an amplitude attenuation equation (AAE) in the time-space (t-x) domain is used to suppress the energy of high-amplitude noise in seismic data. According to the proposed method, the average absolute amplitude within time window is calculated first. The average absolute amplitude obtained from the statistics is used as a threshold for judging high-amplitude noise. Then, we calculate the difference between the amplitude absolute value of each sample point and the threshold. Finally, the obtained difference is used as a variable of the amplitude attenuation function for suppressing high-amplitude noise. Tests on synthetic data and real data demonstrate the effectiveness of the proposed method for attenuation of high-amplitude noise.

Keywords
seismic data
high-amplitude noise
attenuation
t-x domain
References
  1. Abma, R. and Claerbout, J., 1995. Lateral prediction for noise attenuation by t-x and f-x
  2. technique. Geophysics, 60: 1187-1896.
  3. Anderson, R.G. and McMechan, G.A., 1989. Automatic editing of noisy seismic data.
  4. Geophys. Prosp., 37: 875-892.
  5. Bednar, J.B., 1983. Applications of median filtering to deconvolution, pulse estimation,
  6. and statistical editing of seismic data. Geophysics, 48: 158-161.
  7. Cai. X., 1999. An effective method to suppress acoustic wave and high energy noise
  8. frequency-divisionally and adaptively. Oil Geophys. Prosp., 34: 373-380.
  9. Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG
  10. Mtg., Atlanta: 525-527.
  11. Chen, K., and Sacchi, M.D., 2015. Robust reduced-rank filtering for erratic seismic noise
  12. attenuation. Geophysics, 80(1): VI-V11.
  13. Chen, K. and Sacchi, M.D., 2017. Robust f-x projection filtering for simultaneous random
  14. and erratic seismic noise attenuation: Robust f-x projection filter. Geophys. Prosp.,
  15. 65: 650-668.
  16. Claerbout, J., 1992. Earth Soundings Analysis: Processing versus Inversion. Blackwell
  17. Scientific Publications, Oxford.
  18. Duncan, G. and Beresford, G., 1995. Median filter behavior with seismic data. Geophys.
  19. Prosp., 43: 329-345.
  20. Dutta, S., 2008. Attenuation of high amplitude noise in prestack data and preservation of
  21. relative amplitude - a case study. 7th Internat. Conf. Exposit. Petrol. Geophys.: 90.
  22. Fomel, S., 2002. Applications of plane-wave destruction filters. Geophysics, 67:
  23. 1946-1960.
  24. Fomel, S. and Liu, Y., 2010. Seislet transform and seislet frame. Geophysics, 75(3):
  25. V25-V38.
  26. Gulunay, N., 1986. FXDECON and complex Wiener prediction filter. Expanded Abstr.,
  27. 56th Ann. Internat. SEG Mtg., Houston: 279-281.
  28. Liu, C., Liu, Y., Yang, B., Wang, D. and Sun, J., 2006. A 2D multistage median filter to
  29. reduce random seismic noise. Geophysics, 71: V105-V110.
  30. Liu, G.C. and Chen, X.H., 2013. Noncausal f-x-y regularized nonstationary prediction
  31. filtering for random noise attenuation on 3D seismic data. J. Appl. Geophys., 93:
  32. 60-66.
  33. Liu, Y., Liu, C., Wang, D., Li, Q.X. and Feng, X., 2008. Application of time-variant
  34. median filtering technique to attenuation of seismic random noises. Oil Geophys.
  35. Prosp., 43: 327-332.
  36. Liu, Y., Liu, N. and Liu, C., 2015. Adaptive prediction filtering in t-x-y domain for
  37. random noise attenuation. Geophysics, 80(1): V13-V21.
  38. Liu, Z., Chen, X. and Li, J., 2009c. Noncausal spatial prediction filtering based on an
  39. ARMA Model. Appl. Geophys., 62: 122-128.
  40. Oropeza, V.E. and Sacchi, M.D., 2011. Simultaneous seismic data denoising and via
  41. reconstruction multichannel singular spectrum analysis (MSSA). Geophysics, 76(3):
  42. V25-V32.
  43. Niu, H., 2013. Application of frequency-dependent amplitude attenuation method to
  44. suppress strong-energy noise in offshore seismic data. Geophys. Prosp. Petrol., 52:
  45. 394-401.
  46. Ricker, N., 1953. The form and laws of propagation of seismic wavelets. Geophysics, 18:
  47. 10-40.368.
  48. Ristau, J.P. and Moon, W.M., 2001. Adaptive filtering of random noise in 2-D
  49. geophysical data. Geophysics, 66: 342-349,
  50. Sacchi, M.D. and Naghizadeh, M., 2009. Adaptive linear prediction filtering for random
  51. noise attenuation. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston:
  52. 3347-3351.
  53. Stein, J.A. and Langston, T., 2007. Workshop: A review of some powerful noise
  54. elimination techniques for land processing. 69th EAGE Conf., London.
  55. Trickett, S., 2003. F-xy eigenimage noise suppression. Geophysics, 68: 751-759.
  56. Trickett, S. and Burroughs, L., 2009. Prestack rank-reducing noise suppression: theory.
  57. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 3332-3336.
  58. Tyapkin, Y. and Ursin, B., 2005. Optimum stacking of seismic records with irregular
  59. noise. J. Geophys. Engineer., 2: 177-187.
  60. Wang, S.Q., Meng, X.H., Wang, J M., Cui, F.L., He, Y.S. and Chen, X.J., 2006. Seismic
  61. abnormal amplitude self-adapting inhibition. Petrol. Geol. Oilf. Devel. Daqing, 25:
  62. 112-116.
  63. Wang, W., Gao, J.H., Chen, W.C. and Zhu, Z.Y., 2012. Random seismic noise
  64. suppression via structure-adaptive median filter. Chin. J. Geophys (in Chinese), 55:
  65. 1732-1741.
  66. Wu, X.M., Yuan, Y.J. and Li, H., 2017. Anomalous amplitudes attenuation based on the
  67. sgismic wave propagation theory. CGS/SEG Internat. Geophys. Conf., Qingdao,
  68. ina.
  69. Yilmaz, O., 1987. Seismic Data Processing. SEG, Tulsa, OK.
  70. Yuan, S.Y. and Wang, S.X., 2011. A local fx Cadzow method for noise reduction of
  71. seismic data obtained in complex formations. Petrol. Sci., 8: 269-277.
  72. Yuan, Y.J., Zhou, Z.X., Niu, B.H., Wang, H.D., Liu, A.X., 2005. Briefly talk about
  73. processing techniques of improving the S/N ratio in seismic data processing. Oil
  74. Geophys. Prosp., 40: 168-171.
  75. Zhou, Yu. and Garossino, P.G.A., 2005. High-energy noise attenuation of seismic data in
  76. the wavelet-transform domain. Integr. Comput.-Aid. Engineer., 12: 57-67.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing