ARTICLE

Application of trace-based spectral principal component analysis method for seismic thin-layer thickness delineation

JIAN ZHOU JING BA* JOHN P. CASTAGNA JOSÉ M. CARCIONE
Show Less
Hohai University, Nanjing 211100, P.R. China.,
University of Houston, Houston, Texas 77204, U.S.A.,
Nanjing Foreign Language School Fangshan Campus, Nanjing, 211199 China.,
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste, Italy.,
JSE 2019, 28(6), 551–576;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhou, J., Ba, J., Castagna, J.P. and Carcione, J.M., 2019. Application of trace-based spectral principal component analysis method for seismic thin-layer thickness delineation. Journal of Seismic Exploration, 28: 551-576. Spectral decomposition of a 3-dimensional reflection seismic volume generates large volumes of spectral data in the form of time-frequency analysis at every seismic signal location. Conventional spectral principal component analysis (PCA) compresses the multi-dimensional spectral data exclusively on amplitude maps at interpreted seismic horizon. This overlooks the time-variant nature of spectral amplitudes. Hence, it is difficult to estimate thin-layer thickness variations directly from the conventional horizon-based spectral PCA (HSPCA) results. A trace-based spectral principal component analysis (TSPCA) method is proposed for seismic thin-layer thickness delineation. Compared to HSPCA, TSPCA calculates spectral principal components (PCs) within a time window over the targeted seismic event on a trace-by-trace basis. Trace-based spectral PCs are assumed independent, i.e., as amplitude responses from reflection events with different frequency characteristics. A rotation of PC coefficients following the Varimax criterion is proposed to automatically interpret the three most significant spectral PCs as related to (1) reflection amplitude determined by rock impedances, (2) tuning of a pure even-reflection pair, or (3) tuning from a pure odd-reflection pair. The latter two types of tuning-related amplitude are both governed by thin-layer thickness and have different frequency responses. Results on synthetic wedge models of pure odd- and even-reflection pair thin layers show that the trace-based spectral PCs show a distinct relationship to thin-layer thickness. Comparing spectral PC images calculated on a geologically complex 3D model after HSPCA and TSPCA methods, we conclude that TSPCA has superior capability for precise thickness delineation, especially for subtle thickness variations in the model.

Keywords
spectral decomposition
HSPCA
TSPCA
References
  1. Carcione, J.M., Qadrouh, A.N., Perroud, H., Gei, D., Ba, J. and Picotti, S., 2018. Seismic
  2. attenuation, normal moveout stretch, and low-frequency shadows underlying bottom
  3. simulating reflector events. Geophys. Prosp., 66: 857-871.
  4. Castagna, J.P., Sun, S. and Siegfried, R.W., 2003. Instantaneous spectral analysis:
  5. Detection of low-frequency shadows associated with hydrocarbons. The Leading
  6. Edge, 22: 120-127.
  7. Chen, G., Matteucci, G., Fahmy, B. and Finn, C., 2008. Spectral-decomposition response
  8. to reservoir fluids from a deepwater West Africa reservoir. Geophysics, 73(6):
  9. C23-C30.
  10. Chen, Y., Zhou, Y., Chen, W., Zu, S., Huang, W. and Zhang, D., 2017. Empirical
  11. low-rank approximation for seismic noise attenuation. IEEE Transact. Geosci.
  12. Remote Sens., 55: 4696-4711.
  13. Chung, H. and Lawton, D., 1995. Amplitude responses of thin beds: Sinusoidal
  14. approximation versus Ricker approximation. Geophysics, 60: 223-230.
  15. Cohen, L., 1989. Time-frequency distributions-a review. Proc. IEEE, 77: 941-981.
  16. Fomel, S., Landa, E. and Taner, M.T., 2007. Poststack velocity analysis by separation
  17. and imaging of seismic diffractions. Geophysics, 72(6): U89-U94.
  18. Gao, J., Dong, X., Wang, W.-B., Li, Y. and Pan, C., 1999. Instantaneous parameters
  19. extraction via wavelet transform. IEEE Transact. Geosci. Remote Sens., 37: 867-870.
  20. Gholami, A., 2013. Sparse time-frequency decomposition and some applications. IEEE
  21. Transact. Geosci. Remote Sens., 51: 3598-3604.
  22. Guo, H., Marfurt, K.J. and Liu, J.L., 2009. Principal component spectral analysis.
  23. Geophysics, 74(4): P35-P43.
  24. Honorio, B.C.Z., Sanchetta, A.C., Leite, E.P. and Vidal, A.C., 2014. Independent
  25. component spectral analysis. Interpretation-A. J. Subsurf. Characterizat., 2(1):
  26. Sa21-+.
  27. Jolliffe, 1., 2002. Principal Component Analysis. Springer Verlag, New York.
  28. Jolliffe, LT. and Cadima, J., 2016. Principal component analysis: a review and recent
  29. developments. Philosoph. Transact. Roy. Soc. A: Mathem., Phys. Engineer. Sci., 374
  30. (2065).
  31. Kaiser, H.F., 1958. The varimax criterion for analytic rotation in factor-analysis.
  32. Psychometrika, 23(3): 187-200.
  33. Kallweit, R. and Wood, L., 1982. The limits of resolution of zero-phase wavelets.
  34. Geophysics, 47: 1035-1046.
  35. Khare, V. and Martinez, A., 2008. Estimation of sub-tuned reservoir thickness from
  36. amplitudes at different seismic bandwidths - a time-domain approach. Expanded
  37. Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 2968-2972.
  38. Korneev, V.A., Goloshubin, G.M., Daley, T.M. and Silin, D.B., 2004. Seismic
  39. low-frequency effects in monitoring fluid-saturated reservoirs. Geophysics, 69:
  40. 522-532.
  41. Lawley, D.N. and Maxwell, A.E., 1971. Factor Analysis as a Statistical Method.
  42. Butterworths, London.
  43. Levy, S. and Oldenburg, D.W., 1987. Automatic phase correction of common-midpoint
  44. stacked data. Geophysics, 52: 51-59.
  45. Liner, C., 2004. Elements of Three-D Seismology. PennWell Books, Tulsa, OK.
  46. Liu, J.-L. and Marfurt, K.J., 2007. Instantaneous spectral attributes to detect channels.
  47. Geophysics, 72(2): P23-P31.
  48. Marfurt, K.J. and Kirlin, R.L., 2001. Narrow-band spectral analysis and thin-bed tuning.
  49. Geophysics, 66: 1274-1283.
  50. Nowak, E.J., Swan, H.W. and Lane, D., 2008. Quantitative thickness estimates from the
  51. spectral response of AVO measurements. Geophysics, 73(1): C1-C6.
  52. Partyka, G., Gridley, J. and Lopez, J., 1999. Interpretational applications of spectral
  53. decomposition in reservoir characterization. The Leading Edge, 18: 353-360.
  54. Roden, R., Smith, T. and Sacrey, D., 2015. Geologic pattern recognition from seismic
  55. attributes: Principal component analysis and self-organizing maps. Interpretation-A,
  56. J. Subsurf. Characterizat., 3(4): Sae59-Sae83.
  57. Sinha, S., Routh, P.S., Anno, P.D. and Castagna, J.P., 2005. Spectral decomposition of
  58. seismic data with continuous-wavelet transform. Geophysics, 70(6): P19-P25.
  59. Sun, W. and Du, Q., 2018. Graph-regularized fast and robust principal component
  60. analysis for hyperspectral band selection. IEEE Transact. Geosci. Remote Sens., 56:
  61. 3185-3195.
  62. Wang, Y.H., 2012. Reservoir characterization based on seismic spectral variations.
  63. Geophysics, 77(6): M89-M95.
  64. Widess, M.B., 1973. How thin is a thin bed? Geophysics, 38: 1176-1180.
  65. Wiggins, R.A., 1978. Minimum entropy deconvolution. Geoexploration, 16: 21-35.
  66. Williams, G. and Chadwick, A., 2012. Quantitative seismic analysis of a thin layer of
  67. CO2 in the Sleipner injection plume. Geophysics, 77(6): R245-R256.
  68. Zhou, J., Oyem, A. and Castagna, J.P., 2014. An algorithm for frequency-dependent
  69. principal component spectral analysis. Expanded Abstr., 84th Ann. Internat. SEG
  70. Mtg., Denver: 2636-2640.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing