ARTICLE

Application of 2D recursive filter for attenuating footprint noise in seismic data processing

John Smith*
Show Less
b University of California,
JSE 2019, 28(6), 577–591;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Mohebian, R. and Riahi, M.A., 2019. Application of 2D recursive filter for attenuating footprint noise in seismic data processing. Journal of Seismic Exploration, 28: 577-591. The footprint noise usually appears on 3D seismic data either due to insufficient sampling during acquisition or incorrect/unsuitable processing. The presence of this noise conceals the geological information conveyed by the seismic data and appropriate imaging of the underlying structure leads towards attenuating such noises. Ideally, the seismic footprint noise attenuation should be included within the seismic data processing steps; however, such a measure is not usually taken into the conventional processing sequence. For this purpose, an extra effort is required to be done in order to better understand the nature of the footprint noise which itself is dependent upon the geometry of acquisition and depth of the events. In this paper, a method based on applying the 2D recursive filter for footprint noise attenuation has been presented as a step within the seismic data processing sequence. This filter is different and superior to the conventional Cooley-Tukey filter and can significantly increase the seismic data quality.

Keywords
footprint noise
2D recursive filter
low pass filter
processing
References
  1. Alali, A., Machado, G. and Marfurt, K.J., 2016. Attribute-assisted footprint suppression
  2. using a 2D continuous wavelet transform. Expanded Abstr., 86th Ann. Internat.
  3. SEG Mtg., Dallas: 1898-1902. https://doi.org/10.1190/segam20 16-1397 1687.1.
  4. Al-Bannagi, M.S., Fang, K., Kelamis, P.G. and Douglass, G.S., 2005. Acquisition
  5. footprint suppression via the truncated SVD technique. Expanded Abstr., 75th
  6. Ann. Internat. SEG Mtg., Houston. https://doi-org/10.1190/1.2032259.
  7. Ben-Zion, Y., Vernon, F.L., Ozakin, Y., Zigone, D., Ross, Z.E., Meng, H., White, M.,
  8. Reyes, J., Hollis, D. and Barklage, M., 2015. Basic data features and results from
  9. a spatially dense seismic array on the San Jacinto fault zone. Geophys. J.
  10. Internat., 202: 370-380. https://doi.org/10.1093/gji/ggv 142.
  11. Cooley, J.W. and Tukey, J.W., 1965. An algorithm for the machine computation of
  12. complex Fourier series. Math. Comput., 19: 297-301.
  13. Drummond, J.M., Budd, A.J. and Ryan, J.W., 2000. Adapting to noisy 3D data-
  14. attenuating the acquisition footprint. Expanded Abstr., 70th Ann. Internat. SEG
  15. Mtg., Calgary, AB. https://doi.org/10.1190/1.1816247.
  16. de Groot-Hedlin, C.D. and Hedlin, M.A., 2015. A method for detecting and locating
  17. geophysical events using groups of arrays. Geophys. J. Internat., 203: 960-971.
  18. https://doi.org/10.1093/gji/ggv345.
  19. Gibbons, S.J. and Ringdal, F., 2006. The detection of low magnitude seismic events
  20. using array-based waveform correlation, Geophys. J. Internat., 165: 149-166.
  21. https://doi.org/10.1111/j.1365-246X.2006.02865.x.
  22. Gulunay, N., 1999. Acquisition geometry footprints removal. Expanded Abstr., 69th
  23. Ann. Internat. SEG Mtg., Houston. https://doi.org/10.1190/1.1821103.
  24. Gulunay, N., Benjamin, N. and Magesan, M., 2006. Acquisition footprint suppression
  25. on 3D land surveys. First break, 24(2): 71-77.
  26. Inbal, A., Ampuero, J.P. and Clayton, R.W., 2016. Localized seismic deformation in
  27. the upper mantle revealed by dense seismic arrays. Science, 354(6308): 88-92.
  28. https://doi.org/10.1126/science.aaf1370.
  29. Karagiil, A. and Crawford, R., 2003. Use of recent advances in 3D land processing - a
  30. case history from the Pakistan Basin area. Extended Abstr., 65th EAGE Conf.,
  31. Stavanger.
  32. Li, Z., Peng, Z., Meng, X., Inbal, A., Xie, Y., Hollis, D. and Ampuero, J.P., 2015.
  33. Matched filter detection of microseismicity in Long Beach with a 5200-station
  34. dense array. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New Orleans.
  35. https://doi.org/10.1190/segam2015-5924260.1.
  36. Li, Z. and Yao, D., 2016. Microseismic event detection and location using local
  37. coherence and subarray beamforming: applications to the Long Beach 3D array
  38. and the Hi-CLIMB linear array. Abstr., AGU Fall Mtg., San Francisco.
  39. Marfurt, K.J., Scheet, R.M., Sharp, J.A. and Harper, M.G., 1998. Suppression of the
  40. acquisition footprint for seismic sequence attribute mapping. Geophysics, 63:
  41. 1024-1035. https://doi.org/10.1190/1.1444380.
  42. Meunier, J. and Belissent, R., 1993. Reduction of 3D Geometry-Generated Artifacts,
  43. 3rd Internat. Congr. Brazil. Geophys. Soc., Rio de Janeiro.
  44. Pupeikis, R., 2015. Revised 2D fast Fourier transform. IEEE Open Conf., Vilnius: 1-4.
  45. https://doi-org/10.1109/eStream.2015.7119497.
  46. Riahi, N. and Gerstoft, P., 2015. The seismic traffic footprint: Tracking trains, aircraft,
  47. and cars seismically. Geophys. Res. Lett., 42: 2674-2681.
  48. https://doi.org/10.1002/2015GL063558.
  49. Riahi, N. and Gerstoft, P., 2016. Using graph clustering to locate sources within a dense
  50. sensor array. Sign. Process., 132: 110-120.
  51. https://doi.org/10.1016/j.sigpro.2016.10.001.
  52. Rost, S. and Thomas, C., 2002. Array seismology: Methods and applications. Rev.
  53. Geophys., 40(3): 1008, 2-1—2-27. https://doi.org/10.1029/2000RG000100.
  54. Sahai, S.K. and Sufi, K.A., 2006. Use of simple 2-D filters to reduce footprint noise in
  55. seismic data. Geohoriz., 7: 14-17.
  56. Soleymani, H.R., Nejati, M., Arabshahi, S.M. and Riahi, M.A., 2010. Complex trace
  57. transformation and its application to suppress random noise. Extended Abstr.,
  58. 72nd EAGE Conf., Barcelona.
  59. Soubaras, R., 2002. Attenuation of acquisition footprint for non-orthogonal 3D
  60. geometries. Extended Abstr., 64th EAGE Conf., Florence.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing