ARTICLE

Hydraulic fracturing microseismic first arrival picking method based on non-subsampled shearlet transform and higher-order-statistics

GUANQUN SHENG1,2 XINGONG TANG3,1 KAI XIE2 JIE XIONG2
Show Less
Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Wuhan 430100, P.R. China.,
National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University, Jingzhou, Hubei 434000, P.R. China. Electronics and Information School, Yangtze University, Jingzhou, Hubei 434000, P.R. China.,
College of Geophysics and Petroleum Resources, Wuhan 430100, P.R. China,
JSE 2019, 28(6), 593–618;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sheng, G.Q., Tang, X.G., Xie, K. and Xiong, J., 2019. Hydraulic fracturing microseismic first arrival picking method based on non-subsampled shearlet transform and higher-order-statistics. Journal of Seismic Exploration, 28: 593-618. Fast and accurate first arrival picking is the key issue of microseismic data processing. Traditionally manual picking methods will take a lot of time and reduce the data processing efficiency, so it is difficult to meet the demand of real-time data processing for microseismic monitoring. In this paper, we proposed the S-S/L_K (Shearlet-Short time window/Long time window-Kurtosis) algorithm which combined the shearlet multiscale decomposition with higher-order-statistics (HOS). This algorithm not only keeps the advantage of non-subsampled shearlet transform in multiscale analysis, but also maintain strengths of HOS in signal abnormalities detection and Gaussian noise suppressing. The forward records and real data tests show that compared with the PAI-S/K and the STA/LTA algorithm, the proposed method can overcome the influence of noise on the P-phase picking accuracy and obtain a reliable P-phase result for microseismic monitoring.

Keywords
microseismic monitoring
non-subsampled shearlet transform
higher-order-statistics
first arrival picking
References
  1. Ait Laasri, E.H., Akhouayri, E.-S., Agliz, D. and Atmani, A., 2014. Automatic detection
  2. and picking of P-wave arrival in locally stationary noise using cross-
  3. correlation. Digit. Sign. Process., 26: 87-100.
  4. Akram, J. and Eaton, D.W., 2016. A review and appraisal of arrival-time picking
  5. methods for downhole microseismic data. Geophysics, 81(2): KS67-KS87.
  6. Allen, R.V., 1978. Automatic earthquake recognition and timing from single traces. Bull.
  7. Seismol. Soc. Am., 68; 1521-1532.
  8. Alvarez, I., Garcia, L., Mota, S., Cortes, G., Benitez, C. and de la Torre, A., 2013. An
  9. automatic P-phase picking algorithm based on adaptive multiband processing. IEEE
  10. Geosci. Remote Sens. Lett., 10: 1488-1492.
  11. http://dx.doi.org/10.1109/LGRS.2013.2260720.
  12. Anant, K.S. and Dowla, F.U., 1997. Wavelet transform methods for phase identification
  13. in three-component seismograms. Bull. Seismol. Soc. Am., 87: 1598-1612.
  14. Anju, T.S. and Raj, N.R.N., 2016. Shearlet transform based image denoising using
  15. histogram thresholding. Internat. Conf. Communicat. Syst. Netw. (ComNet):
  16. 162-166.
  17. Assous, A. and Elkington, P., 2018. Shearlets and sparse representation for micro-
  18. resistivity borehole image inpainting. Geophysics, 83(1): D17-D25.
  19. Baillard, C., Crawford, W.C., Ballu, V., Hibert, C. and Mangeney, A., 2014. An
  20. automatic Kurtosis based P-and S-phase picker designed for local seismic networks.
  21. Bull. Seismol. Soc. Am., 104: 394-409. http://dx.doi.org/10.1785/0120120347.
  22. Cao, Q., Li, B. and Fan, L., 2017. Medical image fusion based on GPU accelerated
  23. non-subsampled shearlet transform and 2D principal component analysis. IEEE 2nd
  24. Internat. Conf. Sign. Image Process. (ICSIP): 203-207.
  25. doi: 10.1109/SIPROCESS.2017.8124533
  26. Cheng, Y., Li, Y. and Zhang, C., 2017. First arrival time picking for microseismic data
  27. based on shearlet transform. J. Geophys. Engineer., 14: 262-271.
  28. Dai, H. and Macbeth, C., 1997. The application of back-propagation neural network to
  29. automatic picking seismic arrivals from single-component recordings. J. Geophys.
  30. Res.-Solid Earth, 102(B7): 15105-15113.
  31. Dong, L.J., Wesseloo, J., Potvin, Y. and Li, X.B., 2016. Discrimination of mine seismic
  32. events and blasts using the Fisher classifier, naive Bayesian classifier and logistic
  33. regression. Rock Mechan. Rock Engineer., 49: 183-211.
  34. https://doi.org/10.1007/s00603-015-0733-y.
  35. Dong, X., Li, Y., Wu, N., Tian, Y. and Yu, P., 2018. The S-STK/LTK algorithm for
  36. arrival time picking of microseismic signals. J. Geophys. Engineer., 15.
  37. doi: 10.1088/1742-2140/aab30c.
  38. Duncan. P.M. and Eisner. L.. 2010. Reservoir characterization using surface micro-
  39. seismic monitoring. Geophysics, 75(3): A139-A 146.
  40. Earle, P.S. and Shearer, P.M., 1994. Characterization of global seismograms using an
  41. automatic-picking algorithm. Bull. Seismol. Soc. Am., 84: 366-376.
  42. Easley, G., Labate, D. and Lim, W.Q., 2008. Sparse directional image representations
  43. using 1 e discrete shearlet transform. Appl. Computat. Harmon. Analys., 25: 25-46.
  44. Galiana-Merino, J.J., Rosa-Herranz, J.L. and Parolai, S., 2008. Seismic P-phase picking
  45. using a Kurtosis-based criterion in the stationary wavelet domain. IEEE Transact.
  46. Geosci. Remote Sens., 46: 3815-3826.
  47. http://dx.doi.org/10.1109/TGRS.2008.2002647.
  48. Gentili, S. and Michelini, A., 2006. Automatic picking of P- and S-phases using a neural
  49. tree. J. Seismol., 10: 39-63. http://dx.doi.org/10.1007/s10950-006-2296-6.
  50. Gibbons, S.J. and Ringdal, F., 2006. The detection of low magnitude seismic events
  51. using array-based waveform correlation. Geophys. J. Internat., 165: 149-166.
  52. http://dx.doi.org/10.1111/j.1365-246X.2006.02865.x
  53. Gou, X.T., Li, Z.M., Qin, N. and Jin, W.D., 2011. Adaptive picking of microseismic
  54. event arrival using a power spectrum envelope. Comput. Geosci., 37: 158-164.
  55. http://dx.doi.org/10.1016/j.cageo.2010.05.022.
  56. Guo, K. and Labate, D., 2007. Optimally sparse multidimensional representations using
  57. shearlets. SIAM J. Mathemat. Analys., 39: 298-318.
  58. Guo, K. and Labate, D., 2010. Optimally sparse 3D approximations using shearlet
  59. representations. Electron. Res. Announcem. Mathemat. Sci., 17: 125-137.
  60. doi: 10.3934/era.
  61. Hafez, A.G., Khan, M.T.A. and Kohda, T., 2009. Earthquake onset detection using
  62. spectro- ratio on multi-threshold time-frequency sub-band. Digit. Sign Process., 19:
  63. 118-126. http://dx.doi.org/10.1016/j.dsp.2008.08.003.
  64. Hafez, A.G., Khan, M.T.A. and Kohda, T., 2010. Clear P-wave arrival of weak events
  65. and automatic onset determination using wavelet filter banks. Digit. Sign. Process.,
  66. 20: 715-723. http://dx.doi.org/10.1016/j.dsp.2009.10.002.
  67. Hafez, A.G., Rabie, M. and Kohda, T., 2013. Seismic noise study for accurate P-wave
  68. arrival detection via MODWT. Comput. Geosci., 54: 148-159.
  69. http://dx.doi.org/10.1016/j.cageo.2012.12.002.
  70. Hildyard, M.W., Nippress, S.E. and Rietbrock, A., 2008. Event detection and phase
  71. picking using a time-domain estimate of predominate period Tpd. Bull. Seismol.
  72. Soc. Am., 98: 3025-3032. http://dx.doi.org/10.1785/0120070272.
  73. Hu, Y.Q., Yin, C., Pan, S., Wu, F., Li, Y. and Liu, Y., 2012. A microseismic signal
  74. recognition technique based on improved time-varying skewness and Kurtosis
  75. method. Geophys. Prosp. Petrol., 51: 625-632.
  76. Kim, D., Byun, J.M., Lee, M., Choi, J. and Kim, M.S., 2017. Fast first arrival picking
  77. algorithm for noisy microseismic data. Explor. Geophys., 48: 131-136.
  78. Ktiperkoch, L., Meier, T., Lee, J. and Friederich, W., 2010. Automated determination of
  79. P-phase arrival times at regional and local distances using higher order statistics.
  80. Geophys. J. Internat., 181: 1159-1170.
  81. ttp://dx.doi.org/10.1111/j.1365-246X.2010.04570.x.
  82. Kutyniok, G. and Labate, D., 2009. Resolution of the wavefront set using continuou
  83. shearlets. Transact. Am. Mathemat. Soc., 361: 2719-2754.
  84. Karamzadeh, N., Doloei, G.J. and Reza, A.M., 2013. Automatic earthquake signal onset
  85. picking based on the continuous wavelet transform. IEEE Transact. Geosci.
  86. emote Sens., 51: 2666-2674. http://dx.doi.org/10.1109/TGRS.2012.2213824.
  87. Kulesh, M., Diallo, M.S., Holschneider, M., Kurennaya, K., Kruger, F., Ohrnberger, M.
  88. and Scherbaum, E., 2007. Polarization analysis in the wavelet domain based on the
  89. adaptive covariance method. Geophys. J. Internat., 170: 667-678.
  90. http://dx.doi.org/10.1111/j.1365-246X.2007.03417.x.
  91. Kutyniok, G. and Labate, D. 2009. Resolution of the wavefront set using continuous
  92. shearlets. Transact. Am. Mathemat. Soc., 361: 2719-2754.
  93. Leonard, M. and Kennett, B.L.N., 1999. Multi-component autoregressive techniques for
  94. the analysis of seismograms. Phys. Earth Planet. Inter., 113: 247-263.
  95. ttp://dx.doi.org/10.1016/S003 1-9201(99)00054-0.
  96. Leonard, M., 2000. Comparison of manual and automatic onset time picking. Bull.
  97. Seismol. Soc. Am., 90: 1384-1390. doi: 10.1785/0120000026.
  98. Li, X., Shang, X., Wang, Z., Dong, L. and Weng, L., 2016. Identifying P-phase arrivals
  99. with noise: an improved Kurtosis method based on DWT and STA/LTA. J. Appl.
  100. Geophys., 133: 50-61.
  101. Liang, X., Li, Y. and Zhang, C., 2017. Noise suppression for microseismic data by non-
  102. subsampled shearlet transform based on singular value decomposition. Geophys.
  103. Prosp., 66: 894-903. doi: 10.1111/1365-2478.12576
  104. Liu, J.-S., Wang, Y. and Yao, Z.-X., 2013. On micro-seismic first arrival identification:
  105. A case study. Chin. J. Geophys., 56: 1660-1666.
  106. Liu, X.Q., Cai, Y., Zhao, R., Zhao, Y.G., Qu, B.A., Feng, Z.J. and Li, H., 2014. An
  107. automatic seismic signal detection method based on fourth-order statistics and
  108. applications. Appl. Geophys., 11: 128-138.
  109. http://dx.doi.org/10.1007/s11770-014-0433-5.
  110. Lokajitek, T. and Klima, K., 2006. A first arrival identification system of acoustic
  111. emission (AE) signals by means of a high-order statistics approach. Meas. Sci.
  112. Technol., 17: 2461. http://dx.doi.org/10.1088/0957-0233/17/9/013.
  113. Maxwell, S.C., Rutledge, J., Jones, R. and Fehler, M., 2010. Petroleum reservoir
  114. characterization using downhole microseismic monitoring. Geophysics, 75:
  115. A129-A137.
  116. Maeda, N., 1985. A method for reading and checking phase times in auto-processing
  117. system of seismic wave data. Zisin, 38: 365-379.
  118. Merouane, A., Yilmaz, O. and Baysal, E., 2015. Random noise attenuation using
  119. 2-Dimensional shearlet transform. Expanded Abstr., 85th Ann. Internat. SEG Mtg.,
  120. New Orleans: 4770-4774.
  121. Morita, Y. and Hamaguchi, H., 1984. Automatic detection of onset time of seismic
  122. waves and its confidence interval using autoregressive model fitting. Zisin, 37:
  123. 281-293.
  124. Moussa, O. and Khlifa, N., 2018. Video speckle noise reduction using robust diffusion
  125. tensor in shearlet domain. 4th Internat. Conf. Adv. Technolog. Sign. Image Process.
  126. (ATSIP): 1-6. doi: 10.1109/ATSIP.2018.8364523
  127. Nippress, S., Rietbrock, A. and Heath, A., 2010. Optimized automatic pickers:
  128. application to the ANCORP data set. Geophys. J. Internat., 181: 911-925.
  129. http://dx.doi.org/10.1111/j.1365-246X.2010.0453 1.x.
  130. Priya, B.L. and Jayanthi, K., 2017. Edge enhancement of liver CT images using non
  131. subsampled shearlet transform based multislice fusion. Internat. Conf. Wireless
  132. Communicat., Sign. Process. Network. (WiSPNET): 191-195.
  133. Ross, Z.E. and Ben-Zion, Y., 2014. Automatic picking of direct P-, S-seismic phases
  134. and fault zone head waves. Geophys. J. Internat., 199: 368-381.
  135. http://dx.doi.org/10.1093/gji/ ggu267, doi: 10.1109/CSN.2016.7824007.
  136. Saragiotis, C.D., Hadjileontiadis, L.J. and Panas, S.M., 1999. A higher-order
  137. statistics-based phase identification of three-component seismograms in a
  138. redundant wavelet transform domain. Proc. IEEE Worksh. Higher Order Statist.:
  139. 396-399.
  140. Saragiotis, C.D., Hadjileontiadis, L.J. and Panas, S.M., 2002. PAI-S/K: A robust
  141. automatic seismic P-phase arrival identification scheme. IEEE Transact. Geosci.
  142. Remote Sens., 40: 1395-1404. http://dx.doi.org/10.1109/TGRS.2002.800438.
  143. Saragiotis, C.D., Hadjileontiadis, L.J., Rekanos, LT. and Panas, S.M., 2004. Automatic
  144. P-phase picking using maximum Kurtosis and K-statistics criteria. IEEE Geosci.
  145. Remote Sens. Lett., 1: 147-151. http://dx.doi-org/10.1109/LGRS.2004.828915.
  146. Senkaya, M. and Karsli, H., 2014. A semi-automatic approach to identify first arrival
  147. time: the cross correlation technique (CCT). Earth Sci. Res. J., 18: 107-113.
  148. http://dx.doi.org/10.15446/esrj.v18n2.35887.
  149. Shang, X., Li, X., Morales-Esteban, A. and Dong, L., 2018. An improved P-phase
  150. arrival picking method S/L-K-A with an application to the Yongshaba Mine in
  151. China. Pure Appl. Geophys., 3: 1-19.
  152. Sheng. G., Li, Z. and Wang. W., 2015a. A new automatic detection method of
  153. microseismic event based on CWT and HOS. Expanded Abstr., 85th Ann. Internat.
  154. SEG Mtg., New Orleans: 2625-2629.
  155. Sheng. G.. Li, Z. and Wang. W.. 2015b. A new automatic detection method of
  156. microseismic events based on wavelet decomposition and high-order statistics.
  157. Geophys. Prosp. Petrol., 8: 388-395.
  158. Sleeman, R., van Eck, T., 1999. Robust automatic P-phase picking: an on-line
  159. implementation in the analysis of broadband seismogram recordings. Phys. Earth
  160. Planet. Inter., 113: 265-275. http://dx.doi.org/10.1016/S003 1-9201(99)00007-2.
  161. Taylor, K.M., Procopio, M.J., Young, C.J. and Meyer, F.G., 2011. Estimation of arrival
  162. times from seismic waves: a manifold-based approach. Geophys. J. Internat., 185:
  163. 435-452. http://dx.doi.org/10.1111/j.1365-246X.2011.04947.x.
  164. Tselentis, G.A., Martakis, N., Paraskevopoulos, P., Lois, A. and Sokos, E., 2012.
  165. Strategy for automated analysis of passive microseismic data based on S-transform,
  166. Otsu's thresholding, and higher order statistics. Geophysics, 77: Ks43-Ks54.
  167. http://dx.doi.org/10.1190/geo2011-0301.1.
  168. Van Decar, J. and Crosson, R., 1990. Determination of teleseismic relative phase arrival
  169. times using multi-channel cross-correlation and least squares. Bull. Seismol. Soc.
  170. Am., 80: 150-169.
  171. Vidale, J.E., 1986. Complex polarization analysis of particle motion. Bull. Seismol. Soc.
  172. Am., 76: 1393-1405.
  173. Walden, T. and Hosken, J.W.J., 1986. The nature of the non-Gaussianity of primary
  174. reflection coefficients and its significance for deconvolution. Geophys. Prosp.,
  175. 34: 1038-1066.
  176. Wang, J. and Teng, T.-L., 1995. Artificial neural network-based seismic detector. Bull.
  177. Seismol. Soc. Am., 85: 308-319.
  178. Wang, D. and Li, Z.C., 2013. Surface wave attenuation using the Shearlet and TT
  179. transforms. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston:
  180. 4335-4339.
  181. Yung, S.K. and Ikelle, L.T., 1997. An example of seismic time picking by 3rd order
  182. bicoherence. Geophysics, 62: 1947-1952.
  183. Zhang, C. and van der Baan, M., 2018. Multicomponent microseismic data denoising by
  184. 3D shearlet transform. Geophysics, 83(3): A45-A51.
  185. Zhao, Y. and Takano, K., 1999. An artificial neural network approach for broadband
  186. seismic phase picking. Bull. Seismol. Soc. Am., 89: 670-680.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing