ARTICLE

P- and S-wave separation and decomposition of two- and three-component elastic seismograms

WENLONG WANG1 GEORGE A. MCMECHAN2
Show Less
1 Department of Mathematics, Harbin Institute of Technology, 92 Xidazhi St., Nangang Dist., Harbin, Heilongjiang 150001, P.R. China.,
2 Center for Lithospheric Studies, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, U.S.A.,
JSE 2019, 28(5), 425–447;
Submitted: 15 April 2019 | Accepted: 24 July 2019 | Published: 1 October 2019
© 2019 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, W. and McMechan, G.A., 2019. P- and S-wave separation and decomposition of two- and three-component elastic seismograms. Journal of Seismic Exploration, 28: 425-447. Multi-component seismic data are valuable in estimating subsurface elastic parameters. The coexistence of P- and S-waves in multi-component surface seismic data poses an obstacle in extracting the elastic properties. Thus, it is crucial to separate the P- and S-waves in elastic seismograms, or during wavefield extrapolations. We analyze an algorithm that can perform both P- and S-wave separation and vector decomposition of multi-component elastic seismograms that are collected from various media, including isotropie, heterogeneous and transversely isotropie, and we extend it to 3D. This algorithm is based on the dispersion relations of P- and S-waves in isotropic and anisotropic wavefields; the near-surface velocity zone can be separated into several segments horizontally to handle heterogeneity. The algorithm is efficient, and no elastic wavefield extrapolations are needed to perform the separation or decomposition, so no subsurface information is needed, apart from the near-surface model parameters (i.e., P- and S-wave velocities, anisotropic parameters) along the receiver arrays. Tests with synthetic data from various 2D and 3D models show high accuracy by comparing the separation and decomposition results from benchmarks that can only be obtained during elastic wavefield forward modeling.

Keywords
elastic
seismogram
separation
decomposition
3D
References
  1. Amundsen, L., 1995. Decomposition of multicomponent sea-floor data into upgoing anddowngoing P- and S-waves. Geophysics, 60: 563-572.
  2. Dankbaar, J.W.M., 1985. Separation of P- and S-waves. Geophys. Prosp., 33: 970-986.
  3. Dellinger, J. and Etgen, J., 1990. Wave-field separation in two-dimensional anisotropicmedia. Geophysics, 55: 914-919.
  4. Devaney, A.J. and Oristaglio, M.L., 1986. A plane-wave decomposition for elasticwavefields applied to the separation of P-waves and S-waves in vector seismic data.Geophysics, 51: 419-423.
  5. Greenhalgh, S.A., Mason, I.M., Lucas, E., Pant, D. and Eames, R.T., 1990. Controlleddirection reception filtering of P- and S-waves in t-p space. Geophys. J. Internat.,100: 221-234.
  6. Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched layerimproved at grazing incidence for the seismic wave equation. Geophysics, 72(5):SM155-SM167.
  7. Li, Z., Gu, B., Ma, X. and Liang, G., 2015. Separating P- and S-waves in prestack elasticseismograms using the equivalent form of the elastic wave equation. J. Appl.Geophys., 114: 210-223.
  8. Li, Z., Ma, X., Fu, C., Gu, B. and Liang, G., 2016. Frequency-wavenumberimplementation for P- and S-wave separation from multi-component seismic data.Explor. Geophys., 47: 32-43.
  9. Ma, D. and Zhu, G., 2003. P- and S-wave separated elastic wave equation numericalmodeling (in Chinese). Oil Geophys. Prosp. 38: 482-486.
  10. Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade forMarmousi. The Leading Edge, 25: 156-166.
  11. Morse, P.M. and Feshbach, H., 1953. Methods of Theoretical Physics. McGraw-HillBook Company, New York.
  12. Pedersen, @., Ursin, B. and Stovas, A., 2007. Wide-angle phase-slowness approximationsin VTI media. Geophysics, 72(4): 7-S185.
  13. Schoenberg, M.A. and de Hoop, M.V., 2000. Approximate dispersion relations forqP-qSV-waves in transversely isotropic media. Geophysics, 65: 919-933.
  14. Stanton, A. and Sacchi, M.D., 2017. Elastic least-squares one-way wave-equationmigration. Geophysics, 82(4): S293-S305.
  15. Sun, R., 1999. Separating P- and S-waves in a prestack 2-dimensional elastic seismogram.Extended Abstr., 61st EAGE Conf., Helsinki: 6-23.
  16. Sun, R., Chow, J. and Chen, K.J., 2001. Phase correction in separating P- and S-waves inelastic data. Geophysics, 66: 1515-1518.
  17. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.van der Baan, M., 2006. PP/PS wavefield separation by independent component analysis.Geophys. J. Internat., 166: 339-348.
  18. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stressinite-difference method. Geophysics, 51: 889-901.
  19. Wang, C. and Cheng, J., 2017. P/S separation of multi-component seismogram recordedin anisotropic media. Extended Abstr., 79th EAGE Conf., Paris: Tu P3 04.
  20. Wang, W. and McMechan, G.A., 2015. Vector-based elastic reverse-time migration.Geophysics, 80(6): S245-S258.
  21. Wang, W., McMechan, G.A., Tang, C. and Xie, F., 2016. Up/down and P/Sdecompositions of elastic wavefields using complex seismic traces with applicationsto calculating Poynting vectors and angle-domain common-image gathers fromreverse time migrations. Geophysics, 81(4): S181-S194.
  22. Wang, W., McMechan, G.A. and Zhang, Q., 2015. Comparison of two algorithms forisotropic elastic P- and S-vector decomposition. Geophysics, 80(4): T147-T 160.
  23. Wang, Y., Singh, S. and Barton, P.J., 2002. Separation of P- and SV-wavefields frommulticomponent seismic data in the t-p domain. Geophys. J. Internat., 151: 663-672.
  24. Wapenaar, C.P.A., Herrmann, P., Verschuur, D.J. and Berkhout, A.J., 1990.
  25. Decomposition of multicomponent seismic data into primary P- and S-waveresponses. Geophys. Prosp., 38: 633-661.
  26. White, J.E., 1965. Seismic Waves: Radiation, Transmission and Attenuation.McGraw-Hill Book Company, New York.
  27. Xiao, X. and Leaney, W.S., 2010. Local vertical seismic profiling (VSP) elasticreverse-time migration and migration resolution: Salt-flank imaging with transmittedP-to-S waves. Geophysics, 75(2): -S49.
  28. Yao, D., Zhou, X. and Zhong, B., 1993. Method for separating out P-wave or S-wave in
  29. VSP data and its application. Oil Geophys. Prosp., 28: 623-628.
  30. Zhang, J., Tian, Z. and Wang, C., 2007. P- and S-wave separated elastic wave equationnumerical modeling using 2D staggered-grid. Expanded Abstr., 77th Ann. Internat.SEG Mtg., San Antonio: 2104-2109.
  31. Zhang, Q. and McMechan, G.A., 2010. 2D and 3D elastic wavefield vectordecomposition in the wavenumber domain for VTI media. Geophysics, 75(3):D13-D26.
  32. Zhu, H., 2017. Elastic wavefield separation based on the Helmholtz decomposition.Geophysics, 82(2): S173-S183.
  33. Zhu, X., Altan, S. and Li, J., 1999. Recent advances in multicomponent processing. TheLeading Edge, 18: 1283-1288.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing