Sparse dictionary learning for noise attenuation in the exactly flattened dimension

Lv, H., 2019. Sparse dictionary learning for noise attenuation in the exactly flattened dimension. Journal of Seismic Exploration, 28: 449-474. Seismic noise attenuation is a long-standing and crucial problem in reflection seismic data processing community. In recently years, the dictionary learning based approaches have attracted more and more attention. Dictionary learning provides an adaptive way to optimally represent a given dataset. In dictionary learning, the basis function is adapted according the given data instead of being fixed in many analytical sparse transforms. The application of the dictionary learning techniques in seismic data processing has been popular in the past decade. However, most dictionary learning algorithms are directly taken from the image processing community and thus are not suitable for seismic data. Considering that the seismic data is spatially coherent, the dictionary should better be learned according to the coherency information in the seismic data. We found the dictionary learning performs better when the spatial correlation is stronger and thus we propose to use a flattening operator to help learn the dictionary in the flattened dimension, where the strong spatial coherence helps construct a dictionary that follows better the structural pattern in the seismic data. The presented dictionary learning in the flattened dimension (DLF) thus has a stronger capability in separating signal and noise. We use both synthetic and field data examples to demonstrate the superb performance of the proposed method.
- Abma, R. and Claerbout, J., 1995. Lateral prediction for noise attenuation by t-x and f-xtechniques. Geophysics, 60: 1887-1896.
- Bai, M. and Wu, J., 2017. Efficient deblending using median filtering without correctnormal moveout - with comparison on migrated images. J. Seismic Explor., 26:455-479.
- Bai, M., Wu, J., Xie, J. and Zhang, D., 2018a. Least-squares reverse time migration ofblended data with low-rank constraint along structural direction. J. Seismic Explor.,27: 29-48.
- Bai, M., Wu, J., Zu, S. and Chen, W., 2018b. A structural rank reduction operator forremoving artifacts in least-squares reverse time migration. Comput. Geosci., 117:9-20.
- Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEGMtg., Atlanta: 525-527.
- Chen, W., Chen, Y. and Cheng, Z., 2017a. Seismic time-frequency analysis using animproved empirical mode decomposition algorithm. J. Seismic Explor., 26: 367-380.
- Chen, W., Chen, Y. and Liu, W., 2016a. Ground roll attenuation using improvedcomplete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-495.
- Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017b. Multiple reflections noiseattenuation using adaptive randomized-order empirical mode decomposition. IEEEGeosci. Remote Sens. Lett., 14: 18-22.
- Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017c. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26: 25-47.
- Chen, W., Zhang, D. and Chen, Y., 2017d. Random noise reduction using a hybridmethod based on ensemble empirical mode decomposition. J. Seismic Explor., 3:227-249.
- Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptiveempirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
- Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensionalseismic data. Geophys. J. Internat., 209: 21-31.
- Chen, Y., 2018a. Fast waveform detection for microseismic imaging using unsupervisedmachine learning. Geophys. J. Internat.,215: 1185-1199.
- Chen, Y., 2018b, Non-stationary least-squares complex decomposition for microseismicnoise attenuation. Geophys. J. Internat., 213: 1572-1585.
- Chen, Y., Chen, H., Xiang, K. and Chen, X., 2017e. Preserving the discontinuities inleast-squares reverse time migration of simultaneous-source data. Geophysics, 82(3):5- 6.
- Chen, Y. and Fomel, S., 2015, Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80: WD1-WD9.
- Chen, Y. and Fomel, S., 2018. EMD-seislet transform. Geophysics, 83(1): A27-A32.
- Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-sourceseismic data using seislet-domain shaping regularization: Geophysics, 79(5):V179-V189.
- Chen, Y., Huang, W., Zhou, Y., Liu, W. and Zhang, D., 2018. Plane-wave orthogonalpolynomial transform for amplitude-preserving noise attenuation. Geophys. J.Internat., 214: 2207-2223.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical modedecomposition predictive filtering: Geophysics, 79, V81-V91.
- Chen, Y., J. Ma, and S. Fomel, 2016b, Double-sparsity dictionary for seismic noiseattenuation. Geophysics, 81(2): V17-V30.
- Chen, Y., Zhang, D., Huang, W. and Chen, W., 2016c. An open-source matlab codepackage for improved rank-reduction 3D seismic data denoising and reconstruction.Comput. Geosci., 95: 59-66.
- Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016d.
- Simultaneous denoising and reconstruction of 5D seismic data via dampedrank-reduction method. Geophys. J. Internat., 206: 1695-1717.
- Chen, Y., Zhou, Y., Chen, W., Zu, S., Huang, W. and Zhang, D., 2017f,.Empirical lowrank decomposition for seismic noise attenuation. IEEE Transact. Geosci. RemoteSens., 55: 4696-4711.
- Chen, Y., Zu, S., Wang, Y. and Chen, X., 2019. Deblending of simultaneous-source datausing a structure-oriented space-varying median filter. Geophys. J. Internat., 216:1214-1232.
- Cheng, J. and Sacchi, M., 2015. Separation and reconstruction of simultaneous sourcedata via iterative rank reduction. Geophysics, 80(4): V57-V66.
- Dragomiretskiy, K. and Zosso, D., 2014. Variational mode decomposition. IEEETransact. Signal Process., 62: 531-544.
- Fabien-Ouellet,G. Gloaguen, E. and Giroux, B., 2017. Time-domain seismic modelingin viscoelastic media for full waveform inversion on heterogeneous computingplatforms with opencl (????). Comput. Geosci., 100: 142-155.
- Fomel, S., 2002. Application of plane-wave destruction filters. Geophysics, 67:1946-1960.
- Fomel, S., 2013. Seismic data decomposition into spectral components using regularizednon-stationary autoregression. Geophysics, 78: 069-076.
- Gan, S., Chen, Y., Zu, S., Qu, S. and Zhong, W., 2015a. Structure-oriented singular valuedecomposition for random noise attenuation of seismic data. J. Geophys. Engineer.,12: 262-272.
- Gan, S., Wang, S., Chen, Y., Jin, Z. and Zhang, Y., 2015b. Dealiased seismic datainterpolation using seislet transform with low-frequency constraint. IEEE Geosci.Remote Sens. Lett., 12: 2150-2154.
- Gan, S., Wang, S., Chen, Y., Chen, J., Zhong, W. and Zhang, C., 2016a. Improvedrandom noise attenuation using f-x empirical mode decomposition and local similarity.Appl. Geophys., 13: 127-134.
- Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016b. Separation of simultaneoussources using a structural-oriented median filter in the flattened dimension. Comput.Geosci., 86: 46-54.
- Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016c. Velocity analysis ofsimultaneous-source data using high-resolution semblance-coping with the strongnoise. Geophys. J. Internat., 204: 768-779.
- Gan, S., Wang, S., Chen, Y. and Chen, X., 2016d. Simultaneous-source separation usingiterative seislet-frame thresholding, IEEE Geosci. Remote Sens. Lett., 13: 197-201.
- Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H., 2016e. Compressivesensing for seismic data reconstruction using a fast projection onto convex setsalgorithm based on the seislet transform. J. Appl. Geophys., 130: 194-208.
- Gao, J., Sacchi, M.D. and Chen, X., 2013. A fast reduced-rank interpolation method forprestack seismic volumes that depend on four spatial dimensions. Geophysics, 78(1,):V21-V30.
- Garcia-Yeguas, A., Ledo, J., Pina-Varas, P., Prudencio, J., Queralt, P., Marcuello, A.,
- Ibanez, J.M., Benjumea, B., Sanchez-Alzola, A. and Perez, N., 2017. A 3D jointinterpretation of magnetotelluric and seismic tomographic models: The case of thevolcanic island of Tenerife. Comput. Geosci, 109: 95-105.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung,
- C.C. and Liu, H.H., 1998. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc.London Series A, 454: 903-995.
- Li, C., Liu, G. and Li, Y., 2017a,. A practical implementation of 3d TTI reverse timemigration with multi-gpus. Comput. Geosci., 102: 68-78.
- Li, C. and Zhang, F., 2017. Matching pursuit parallel decomposition of seismic data.Comput. Geosci., 104: 54-61.
- Li, H., Tuo, X., Shen, T., Henderson, MJ., Courtois, J. and Yan, M., 2017b. Animproved lossless group compression algorithm for seismic data in seg-y andminiseed file formats. Comput. Geosci., 100: 41-45.
- Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequencynoise suppression based on mathematical morphology in microseismic monitoring.Geophysics, 81: V159-V167.
- Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detectionusing multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133:39-49.
- Liu, S., Yang, D. and Ma, J., 2017a. A modified symplectic prk scheme for seismic wavemodeling. Comput. Geosci., 99: 28-36.
- Liu, W., Cao, S. and Chen, Y., 2016a. Applications of variational mode decomposition inseismic time-frequency analysis. Geophysics, 81(5): V365-V378.
- Liu, W., Cao, S. and Chen, Y., 2016b. Seismic time-frequency analysis via empiricalwavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
- Liu, W., Cao, S., Chen, Y. and Zu, S., 2016c. An effective approach to attenuate randomnoise based on compressive sensing and curvelet transform. J. Geophys. Engineer.,13: 135-145.
- Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018. A novel hydrocarbon detectionapproach via high-resolution frequency-dependent AVO inversion based onvariational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56:2007-2024.
- Liu, W., Cao, S. and Wang, Z., 2017b. Application of variational mode decomposition toseismic random noise reduction. J. Geophys. Engineer., 14: 888.
- Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017c. Spectral decomposition forhydrocarbon detection based on VMD and Teager-Kaiser energy. IEEE Geosci.Remote Sens. Lett., 14: 539-543.
- Liu, Y., Fomel, S. and Liu, G., 2010. Nonlinear structure-enhancing filtering usingplane-wave prediction. Geophys. Prosp., 58: 415-427.
- Lv, H. and Bai, M., 2018. Learning dictionary in the approximately flattened structuredomain. J. Appl. Geophys., 159: 522-531.
- Mayne, W.H., 1962. Common reflection point horizontal data stacking techniques.Geophysics, 27: 927-938.
- Rastogi, R., Londhe, A., Srivastava, A., Sirasala, K.M. and Khonde, K., 2017. 3D
- Kirchhoff depth migration algorithm: A new scalable approach for parallelization onmulticore CPU based cluster. Comput. Geosci., 100: 67-75.
- Romano, Y. and Elad, M., 2013. Improving K-VSD denoising by post-processing itsmethod-noise. Image Processing (ICIP), 20th IEEE Internat. Conf.: 435-439.
- Rubinstein, R., Zibulevsky, M. and Elad, M., 2008. Efficient implementation of the
- K-SVD algorithm using batch orthogonal matching pursuit. Tech. Report.
- Rubinstein, R., Zibulevsky, M. and Elad, M., 2010. Double sparsity: learning sparsedictionaries for sparse signal approximation. IEEE Transact. Signal Process., 58:1553-1564.
- Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising andinterpolation of 2D seismic data using data-driven non-negative dictionary learning.Signal Process., 141: 309-321.
- Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-drivenmulti-task sparse dictionary learning for noise attenuation of 3D seismic data.Geophysics, 82(6): V385-V396.
- Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Marvi, H. and Ahmadifard, A., 2016.
- Sparse time-frequency representation for seismic noise reduction using low-rank andsparse decomposition. Geophysics, 81: V117-V124.
- Siahsar, M.A.N., S. Gholtashi, E. Olyaei, W. Chen, and Y. Chen, 2017c, Simultaneousdenoising and interpolation of 3D seismic data via damped data-driven optimalsingular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
- Song, C., Liu, Z., Wang, Y., Li, X. and Hu, G., 2017. Multi-waveform classification forseismic facies analysis. Comput. Geosci., 101: 1-9.
- Vautard, R., Yiou, P. and Ghil, M., 1992. Singular-spectrum analysis: A toolkit for short,noisy chaotic signals. Physica D: Nonlinear Phenom., 58: 95-126.
- Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017a. Three-operator proximalsplitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens.Lett., 14: 1830-1834.
- Wang, Y., Zhou, H., Chen, H. and Chen, Y., 2017b. Adaptive stabilization for
- Q-compensated reverse time migration. Geophysics, 83: S$15-S32.
- Wang, Y., Zhou, H., Ma, X. and Chen, Y., 2018. L1-2 minimization for exact and stableseismic attenuation compensation, Geophys. J. Internat., 213: 1629-1646.
- Wu, G., Fomel, S. and Chen, Y., 2018. Data-driven time-frequency analysis of seismicdata using non-stationary prony method. Geophys. Prosp., 66: 85-97.
- Wu, J. and Bai, M., 2018a. Incoherent dictionary learning for reducing crosstalk noise in |east-squares reverse time migration. Comput. Geosci., 114: 11-21.
- Wu, J. and Bai, M., 2018b. Stacking seismic data based on principal component analysis.J. Seismic Explor., 27: 331-348.
- Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: Anoise-assisted data analysis method. Advances in Adaptive Data Analysis, 1: 1-41.
- Xie, J., Chen, W., Zhang, D., Zu, S. and Chen, Y., 2017. Application of principalcomponent analysis in weighted stacking of seismic data. IEEE Geosci. Remote Sens.Lett., 14: 1213-1217.
- Xie, J., Di, B., Schmitt, D., Wei, J. and Chen, Y., 2018. Estimation of 6 and C,, oforganic-rich shale from laser ultrasonic technique (LUT) measurement. Geophysis,83(4): C137-C152.
- Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016. Simultaneous sources separation viaan iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13:1915-1919.
- Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterativedeblending of simultaneous source seismic data using high-order radon transform. J.Appl. Geophys., 139: 79-90.
- Yang, W., Wang, R., Wu, J., Chen, Y., Gan, S. and Zhong, W., 2015. An efficient andeffective common reflection surface stacking approach using local similarity andplane-wave flattening. J. Appl. Geophys., 117: 67-72.
- Yang, X. and Zhu, P., 2017. Stochastic seismic inversion based on an improved localgradual deformation method. Comput. Geosci., 109: 75-86.
- Zhang, D., Chen, Y., Huang, W. and Gan, S., 2016. Multi-step damped multichannelsingular spectrum analysis for simultaneous reconstruction and denoising of 3Dseismic data. J. Geophys. Engineer., 13: 704-720.
- Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybridrank-sparsity constraint model for simultaneous reconstruction and denoising of 3Dseismic data. Geophysics, 82(5): V351-V367.
- Zhou, Y., Gao, J., Chen, W. and Frossard, P., 2016. Seismic simultaneous sourceseparation via patchwise sparse representation. IEEE Transact. Geosci. Remote Sens.,54: 5271-5284.
- Zhou, Y. and Han, W., 2018. Multiples attenuation in the presence of blending noise. J.Seismic Explor., 27: 69-88.
- Zhou, Y., Li, S., Xie, J., Zhang, D. and Chen, Y., 2017a. Sparse dictionary learning forseismic noise attenuation using a fast orthogonal matching pursuit algorithm. J.Seismic Explor., 26: 433-454.
- Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an onlinesubspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.
- Zhou, Y., Shi, C., Chen, H., Xie, J., Wu, G. and Chen, Y., 2017b. Spike-like blendingnoise attenuation using structural low-rank decomposition. IEEE Geosci. RemoteSens. Lett., 14: 1633-1637.
- Zhou, Y. and S. Zhang, S., 2017. Robust noise attenuation based on nuclear normminimization and a trace prediction strategy. J. Appl. Geophys., 147: 52-67.
- Zhu, L., Liu, E. and Mcclellan, J-H., 2014. Seismic data denoising through multiscale andsparsity-promoting dictionary learning. Geophysics, 80: WD45-WD57.
- Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016. A periodicallyvarying code for improving deblending of simultaneous sources in marineacquisition. Geophysics, 81:V213-V225.
- Zu, S., Zhou, H., Chen, Y., Pan, X., Gan, S. and Zhang, D., 2016. Interpolating big gapsusing inversion with slope constraint. IEEE Geosci. Remote Sens. Lett., 13:1369-1373.
- Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017. Iterativedeblending of simultaneous-source data using a coherency-pass shaping operator.Geophys. J. Internat., 211: 541-557.
- Zu, S., Zhou, H., Chen, H., Gong, F., Li, C., Zheng, H. and Chen, Y., 2017. Two fieldtrials for deblending of simultaneous source: why we failed and why we succeeded?J. Appl. Geophys., 143: 182-194.
- Zu, S., Zhou, H., Chen, H., Li, Q., Zhang, Q. and Chen, Y., 2017. Shot-domaindeblending using least-squares inversion. Geophysics, 82: V241-V256.