Sparse dictionary learning for noise attenuation in the exactly flattened dimension

Lv, H., 2019. Sparse dictionary learning for noise attenuation in the exactly flattened dimension. Journal of Seismic Exploration, 28: 449-474. Seismic noise attenuation is a long-standing and crucial problem in reflection seismic data processing community. In recently years, the dictionary learning based approaches have attracted more and more attention. Dictionary learning provides an adaptive way to optimally represent a given dataset. In dictionary learning, the basis function is adapted according the given data instead of being fixed in many analytical sparse transforms. The application of the dictionary learning techniques in seismic data processing has been popular in the past decade. However, most dictionary learning algorithms are directly taken from the image processing community and thus are not suitable for seismic data. Considering that the seismic data is spatially coherent, the dictionary should better be learned according to the coherency information in the seismic data. We found the dictionary learning performs better when the spatial correlation is stronger and thus we propose to use a flattening operator to help learn the dictionary in the flattened dimension, where the strong spatial coherence helps construct a dictionary that follows better the structural pattern in the seismic data. The presented dictionary learning in the flattened dimension (DLF) thus has a stronger capability in separating signal and noise. We use both synthetic and field data examples to demonstrate the superb performance of the proposed method.
- Abma, R. and Claerbout, J., 1995. Lateral prediction for noise attenuation by t-x and f-x
- techniques. Geophysics, 60: 1887-1896.
- Bai, M. and Wu, J., 2017. Efficient deblending using median filtering without correct
- normal moveout - with comparison on migrated images. J. Seismic Explor., 26:
- 455-479.
- Bai, M., Wu, J., Xie, J. and Zhang, D., 2018a. Least-squares reverse time migration of
- blended data with low-rank constraint along structural direction. J. Seismic Explor.,
- 27: 29-48.
- Bai, M., Wu, J., Zu, S. and Chen, W., 2018b. A structural rank reduction operator for
- removing artifacts in least-squares reverse time migration. Comput. Geosci., 117:
- 9-20.
- Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG
- Mtg., Atlanta: 525-527.
- Chen, W., Chen, Y. and Cheng, Z., 2017a. Seismic time-frequency analysis using an
- improved empirical mode decomposition algorithm. J. Seismic Explor., 26: 367-380.
- Chen, W., Chen, Y. and Liu, W., 2016a. Ground roll attenuation using improved
- complete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-495.
- Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017b. Multiple reflections noise
- attenuation using adaptive randomized-order empirical mode decomposition. IEEE
- Geosci. Remote Sens. Lett., 14: 18-22.
- Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017c. Preparing the initial model for iterative
- deblending by median filtering. J. Seismic Explor., 26: 25-47.
- Chen, W., Zhang, D. and Chen, Y., 2017d. Random noise reduction using a hybrid
- method based on ensemble empirical mode decomposition. J. Seismic Explor., 3:
- 227-249.
- Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptive
- empirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
- Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional
- seismic data. Geophys. J. Internat., 209: 21-31.
- Chen, Y., 2018a. Fast waveform detection for microseismic imaging using unsupervised
- machine learning. Geophys. J. Internat.,215: 1185-1199.
- Chen, Y., 2018b, Non-stationary least-squares complex decomposition for microseismic
- noise attenuation. Geophys. J. Internat., 213: 1572-1585.
- Chen, Y., Chen, H., Xiang, K. and Chen, X., 2017e. Preserving the discontinuities in
- least-squares reverse time migration of simultaneous-source data. Geophysics, 82(3):
- $185- $196.
- Chen, Y. and Fomel, S., 2015, Random noise attenuation using local signal-and-noise
- orthogonalization. Geophysics, 80: WD1-WD9.
- Chen, Y. and Fomel, S., 2018. EMD-seislet transform. Geophysics, 83(1): A27-A32.
- Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-source
- seismic data using seislet-domain shaping regularization: Geophysics, 79(5):
- V179-V189.
- Chen, Y., Huang, W., Zhou, Y., Liu, W. and Zhang, D., 2018. Plane-wave orthogonal
- polynomial transform for amplitude-preserving noise attenuation. Geophys. J.
- Internat., 214: 2207-2223.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode
- decomposition predictive filtering: Geophysics, 79, V81-V91.
- Chen, Y., J. Ma, and S. Fomel, 2016b, Double-sparsity dictionary for seismic noise
- attenuation. Geophysics, 81(2): V17-V30.
- Chen, Y., Zhang, D., Huang, W. and Chen, W., 2016c. An open-source matlab code
- package for improved rank-reduction 3D seismic data denoising and reconstruction.
- Comput. Geosci., 95: 59-66.
- Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016d.
- Simultaneous denoising and reconstruction of 5D seismic data via damped
- rank-reduction method. Geophys. J. Internat., 206: 1695-1717.
- Chen, Y., Zhou, Y., Chen, W., Zu, S., Huang, W. and Zhang, D., 2017f,.Empirical low
- rank decomposition for seismic noise attenuation. IEEE Transact. Geosci. Remote
- Sens., 55: 4696-4711.
- Chen, Y., Zu, S., Wang, Y. and Chen, X., 2019. Deblending of simultaneous-source data
- using a structure-oriented space-varying median filter. Geophys. J. Internat., 216:
- 1214-1232.
- Cheng, J. and Sacchi, M., 2015. Separation and reconstruction of simultaneous source
- data via iterative rank reduction. Geophysics, 80(4): V57-V66.
- Dragomiretskiy, K. and Zosso, D., 2014. Variational mode decomposition. IEEE
- Transact. Signal Process., 62: 531-544.
- Fabien-Ouellet,G. Gloaguen, E. and Giroux, B., 2017. Time-domain seismic modeling
- in viscoelastic media for full waveform inversion on heterogeneous computing
- platforms with opencl (????). Comput. Geosci., 100: 142-155.
- Fomel, S., 2002. Application of plane-wave destruction filters. Geophysics, 67:
- 1946-1960.
- Fomel, S., 2013. Seismic data decomposition into spectral components using regularized
- non-stationary autoregression. Geophysics, 78: 069-076.
- Gan, S., Chen, Y., Zu, S., Qu, S. and Zhong, W., 2015a. Structure-oriented singular value
- decomposition for random noise attenuation of seismic data. J. Geophys. Engineer.,
- 12: 262-272.
- Gan, S., Wang, S., Chen, Y., Jin, Z. and Zhang, Y., 2015b. Dealiased seismic data
- interpolation using seislet transform with low-frequency constraint. IEEE Geosci.
- Remote Sens. Lett., 12: 2150-2154.
- Gan, S., Wang, S., Chen, Y., Chen, J., Zhong, W. and Zhang, C., 2016a. Improved
- random noise attenuation using f-x empirical mode decomposition and local similarity.
- Appl. Geophys., 13: 127-134.
- Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016b. Separation of simultaneous
- sources using a structural-oriented median filter in the flattened dimension. Comput.
- Geosci., 86: 46-54.
- Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016c. Velocity analysis of
- simultaneous-source data using high-resolution semblance-coping with the strong
- noise. Geophys. J. Internat., 204: 768-779.
- Gan, S., Wang, S., Chen, Y. and Chen, X., 2016d. Simultaneous-source separation using
- iterative seislet-frame thresholding, IEEE Geosci. Remote Sens. Lett., 13: 197-201.
- Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H., 2016e. Compressive
- sensing for seismic data reconstruction using a fast projection onto convex sets
- algorithm based on the seislet transform. J. Appl. Geophys., 130: 194-208.
- Gao, J., Sacchi, M.D. and Chen, X., 2013. A fast reduced-rank interpolation method for
- prestack seismic volumes that depend on four spatial dimensions. Geophysics, 78(1,):
- V21-V30.
- Garcia-Yeguas, A., Ledo, J., Pina-Varas, P., Prudencio, J., Queralt, P., Marcuello, A.,
- Ibanez, J.M., Benjumea, B., Sanchez-Alzola, A. and Perez, N., 2017. A 3D joint
- interpretation of magnetotelluric and seismic tomographic models: The case of the
- volcanic island of Tenerife. Comput. Geosci, 109: 95-105.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung,
- C.C. and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert
- spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc.
- London Series A, 454: 903-995.
- Li, C., Liu, G. and Li, Y., 2017a,. A practical implementation of 3d TTI reverse time
- migration with multi-gpus. Comput. Geosci., 102: 68-78.
- Li, C. and Zhang, F., 2017. Matching pursuit parallel decomposition of seismic data.
- Comput. Geosci., 104: 54-61.
- Li, H., Tuo, X., Shen, T., Henderson, MJ., Courtois, J. and Yan, M., 2017b. An
- improved lossless group compression algorithm for seismic data in seg-y and
- miniseed file formats. Comput. Geosci., 100: 41-45.
- Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequency
- noise suppression based on mathematical morphology in microseismic monitoring.
- Geophysics, 81: V159-V167.
- Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detection
- using multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133:
- 39-49.
- Liu, S., Yang, D. and Ma, J., 2017a. A modified symplectic prk scheme for seismic wave
- modeling. Comput. Geosci., 99: 28-36.
- Liu, W., Cao, S. and Chen, Y., 2016a. Applications of variational mode decomposition in
- seismic time-frequency analysis. Geophysics, 81(5): V365-V378.
- Liu, W., Cao, S. and Chen, Y., 2016b. Seismic time-frequency analysis via empirical
- wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
- Liu, W., Cao, S., Chen, Y. and Zu, S., 2016c. An effective approach to attenuate random
- noise based on compressive sensing and curvelet transform. J. Geophys. Engineer.,
- 13: 135-145.
- Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018. A novel hydrocarbon detection
- approach via high-resolution frequency-dependent AVO inversion based on
- variational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56:
- 2007-2024.
- Liu, W., Cao, S. and Wang, Z., 2017b. Application of variational mode decomposition to
- seismic random noise reduction. J. Geophys. Engineer., 14: 888.
- Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017c. Spectral decomposition for
- hydrocarbon detection based on VMD and Teager-Kaiser energy. IEEE Geosci.
- Remote Sens. Lett., 14: 539-543.
- Liu, Y., Fomel, S. and Liu, G., 2010. Nonlinear structure-enhancing filtering using
- plane-wave prediction. Geophys. Prosp., 58: 415-427.
- Lv, H. and Bai, M., 2018. Learning dictionary in the approximately flattened structure
- domain. J. Appl. Geophys., 159: 522-531.
- Mayne, W.H., 1962. Common reflection point horizontal data stacking techniques.
- Geophysics, 27: 927-938.
- Rastogi, R., Londhe, A., Srivastava, A., Sirasala, K.M. and Khonde, K., 2017. 3D
- Kirchhoff depth migration algorithm: A new scalable approach for parallelization on
- multicore CPU based cluster. Comput. Geosci., 100: 67-75.
- Romano, Y. and Elad, M., 2013. Improving K-VSD denoising by post-processing its
- method-noise. Image Processing (ICIP), 20th IEEE Internat. Conf.: 435-439.
- Rubinstein, R., Zibulevsky, M. and Elad, M., 2008. Efficient implementation of the
- K-SVD algorithm using batch orthogonal matching pursuit. Tech. Report.
- Rubinstein, R., Zibulevsky, M. and Elad, M., 2010. Double sparsity: learning sparse
- dictionaries for sparse signal approximation. IEEE Transact. Signal Process., 58:
- 1553-1564.
- Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising and
- interpolation of 2D seismic data using data-driven non-negative dictionary learning.
- Signal Process., 141: 309-321.
- Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-driven
- multi-task sparse dictionary learning for noise attenuation of 3D seismic data.
- Geophysics, 82(6): V385-V396.
- Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Marvi, H. and Ahmadifard, A., 2016.
- Sparse time-frequency representation for seismic noise reduction using low-rank and
- sparse decomposition. Geophysics, 81: V117-V124.
- Siahsar, M.A.N., S. Gholtashi, E. Olyaei, W. Chen, and Y. Chen, 2017c, Simultaneous
- denoising and interpolation of 3D seismic data via damped data-driven optimal
- singular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
- Song, C., Liu, Z., Wang, Y., Li, X. and Hu, G., 2017. Multi-waveform classification for
- seismic facies analysis. Comput. Geosci., 101: 1-9.
- Vautard, R., Yiou, P. and Ghil, M., 1992. Singular-spectrum analysis: A toolkit for short,
- noisy chaotic signals. Physica D: Nonlinear Phenom., 58: 95-126.
- Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017a. Three-operator proximal
- splitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens.
- Lett., 14: 1830-1834.
- Wang, Y., Zhou, H., Chen, H. and Chen, Y., 2017b. Adaptive stabilization for
- Q-compensated reverse time migration. Geophysics, 83: S$15-S32.
- Wang, Y., Zhou, H., Ma, X. and Chen, Y., 2018. L1-2 minimization for exact and stable
- seismic attenuation compensation, Geophys. J. Internat., 213: 1629-1646.
- Wu, G., Fomel, S. and Chen, Y., 2018. Data-driven time-frequency analysis of seismic
- data using non-stationary prony method. Geophys. Prosp., 66: 85-97.
- Wu, J. and Bai, M., 2018a. Incoherent dictionary learning for reducing crosstalk noise in |
- east-squares reverse time migration. Comput. Geosci., 114: 11-21.
- Wu, J. and Bai, M., 2018b. Stacking seismic data based on principal component analysis.
- J. Seismic Explor., 27: 331-348.
- Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: A
- noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1: 1-41.
- Xie, J., Chen, W., Zhang, D., Zu, S. and Chen, Y., 2017. Application of principal
- component analysis in weighted stacking of seismic data. IEEE Geosci. Remote Sens.
- Lett., 14: 1213-1217.
- Xie, J., Di, B., Schmitt, D., Wei, J. and Chen, Y., 2018. Estimation of 6 and C,, of
- organic-rich shale from laser ultrasonic technique (LUT) measurement. Geophysis,
- 83(4): C137-C152.
- Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016. Simultaneous sources separation via
- an iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13:
- 1915-1919.
- Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterative
- deblending of simultaneous source seismic data using high-order radon transform. J.
- Appl. Geophys., 139: 79-90.
- Yang, W., Wang, R., Wu, J., Chen, Y., Gan, S. and Zhong, W., 2015. An efficient and
- effective common reflection surface stacking approach using local similarity and
- plane-wave flattening. J. Appl. Geophys., 117: 67-72.
- Yang, X. and Zhu, P., 2017. Stochastic seismic inversion based on an improved local
- gradual deformation method. Comput. Geosci., 109: 75-86.
- Zhang, D., Chen, Y., Huang, W. and Gan, S., 2016. Multi-step damped multichannel
- singular spectrum analysis for simultaneous reconstruction and denoising of 3D
- seismic data. J. Geophys. Engineer., 13: 704-720.
- Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybrid
- rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D
- seismic data. Geophysics, 82(5): V351-V367.
- Zhou, Y., Gao, J., Chen, W. and Frossard, P., 2016. Seismic simultaneous source
- separation via patchwise sparse representation. IEEE Transact. Geosci. Remote Sens.,
- 54: 5271-5284.
- Zhou, Y. and Han, W., 2018. Multiples attenuation in the presence of blending noise. J.
- Seismic Explor., 27: 69-88.
- Zhou, Y., Li, S., Xie, J., Zhang, D. and Chen, Y., 2017a. Sparse dictionary learning for
- seismic noise attenuation using a fast orthogonal matching pursuit algorithm. J.
- Seismic Explor., 26: 433-454.
- Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an online
- subspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.
- Zhou, Y., Shi, C., Chen, H., Xie, J., Wu, G. and Chen, Y., 2017b. Spike-like blending
- noise attenuation using structural low-rank decomposition. IEEE Geosci. Remote
- Sens. Lett., 14: 1633-1637.
- Zhou, Y. and S. Zhang, S., 2017. Robust noise attenuation based on nuclear norm
- minimization and a trace prediction strategy. J. Appl. Geophys., 147: 52-67.
- Zhu, L., Liu, E. and Mcclellan, J-H., 2014. Seismic data denoising through multiscale and
- sparsity-promoting dictionary learning. Geophysics, 80: WD45-WD57.
- Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016. A periodically
- varying code for improving deblending of simultaneous sources in marine
- acquisition. Geophysics, 81:V213-V225.
- Zu, S., Zhou, H., Chen, Y., Pan, X., Gan, S. and Zhang, D., 2016. Interpolating big gaps
- using inversion with slope constraint. IEEE Geosci. Remote Sens. Lett., 13:
- 1369-1373.
- Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017. Iterative
- deblending of simultaneous-source data using a coherency-pass shaping operator.
- Geophys. J. Internat., 211: 541-557.
- Zu, S., Zhou, H., Chen, H., Gong, F., Li, C., Zheng, H. and Chen, Y., 2017. Two field
- trials for deblending of simultaneous source: why we failed and why we succeeded?
- J. Appl. Geophys., 143: 182-194.
- Zu, S., Zhou, H., Chen, H., Li, Q., Zhang, Q. and Chen, Y., 2017. Shot-domain
- deblending using least-squares inversion. Geophysics, 82: V241-V256.