Seismic data reconstruction via complex shearlet transform and block coordinate relaxation

Liu, J., Gu, Y. and Chou, Y.X., 2019. Seismic data reconstruction via complex shearlet transform and block coordinate relaxation. Journal of Seismic Exploration, 28: 307-332. Due to practical and economic limitations, real seismic data is not densely sampled in all coordinates, which will affect the subsequent seismic data processing steps, such as migration, surface-related multiple elimination and inversion. Therefore, it is necessary to reconstruct the incomplete seismic data. This paper explains the application of the complex shearlet transform to seismic data reconstruction. With a Z; constraint and the Block Coordinate Relaxation (BCR) method, performance of the complex shearlet-based, real shearlet-based and well-accepted curvelet-based reconstruction are compared in terms of recovered f-k spectrum and signal to noise ratio (SNR). We also discuss the shift invariance of the complex shearlet transform and compare the performances of the BCR and the widely used Projection Onto Convex Sets (POCS) method. The numerical experiments on synthetic and real data with different under-sampling rates demonstrate the validity of the proposed method, especially for the case of large amounts of traces missing.
- Abma, R. and Kabir, N., 2006. 3D interpolation of irregular data with a POCS algorithm.
- Geophysics, 71(6): E91-E97.
- Alliney, S. and Ruzinsky, S.A., 1994. An algorithm for the minimization of mixed /,
- and /, norm with application to Bayesian estimation. IEEE Transact. Signal
- Process., 42: 618-627
- Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W., 1975. Discrete Multivariate Analysis:
- Theory and Practice. MIT Press, Cambridge, MA.
- Bruce, A., Sardy, S. and Tseng P., 1998. Block coordinate relaxation methods for
- nonparametric signal de-noising. Proc. SPIE - The International Society for Optical
- Engineering, 3391: 75-86.
- Cao, J., Wang, Y., Yang, C. and Zhao, J., 2011. A review on restoration of seismic
- wavefields based on regularization and compressive sensing. Inverse Probl. Sci.
- Engineer., 19: 679-704.
- Cao, J., Wang, Y. and Yang, C., 2012. Seismic data restoration based on compressive
- sensing using the regularization and zero-norm sparse optimization. Chin. J.
- Geophys., 55: 596-607.
- Cao, J. and Wang, Y., 2014. Seismic data restoration with a fast Li norm trust region
- method. J. Geophys. Engineer., 11: 045010.
- Cao, J. Wang, Y. and Wang, B., 2015a. Accelerating seismic interpolation with a
- gradient projection method based on tight frame property of curvelet. Explor.
- Geophys., 43: 253-260.
- Cao, J. and Zhao, J., 2015b. 3D seismic interpolation with a low redundancy, fast curvelet
- transform. J. Seismic Explor., 24: 121-134.
- Cao, J. and Wang, B., 2015c. An improved projection onto convex sets methods for
- simultaneous interpolation and denoising. Chin. J. Geophys. (in Chinese), 58:
- 2935-2947.
- Candés, E. and Donoho, D.L., 2004. New tight frames of curvelets and optimal
- representation of objects with C singularities. Comm. Pure Appl. Math., 57:
- 219-266.
- Chemingui, N. and Biondi, B., 2002. Seismic data reconstruction by inversion to common
- offset. Geophysics, 67: 1575-1585.
- Chen, S., Donoho, D.L. and Saunders, M., 1996. Atomic decomposition by basis pursuit
- Tech. Report, Stanford University.
- Easley, G., Labate, D. and Lim, W.Q., 2008. Sparse directional image representations
- using the discrete shearlet transform. Appl. Computat. Harmon. Analys., 25:
- 25-46.
- Feng, F., Wang, Z., Liu, C. and Wang, D., 2016. Seismic data reconstruction based on
- sparse constraint in the shearlet domain. Geophys. Prosp. Petrol., 55: 682-691.
- Fomel, S., 2003. Seismic reflection data interpolation with differential offset and shot
- continuation. Geophysics, 68: 733-744.
- Gao, J., Chen, X., Li, J., Liu, G.-C. and Ma, J., 2010. Irregular seismic data reconstruction
- based on exponential threshold model of POCS method. Appl. Geophys. 72:
- 229-238.
- Gao, J., Sacchi, M. and Chen, X., 2013. A fast reduced-rank interpolation method for
- prestack seismic volumes that depend on four spatial dimensions. Geophysics,
- 78(1): V21-V30.
- Genzel, M. and Kutyniok, G., 2014. Asymptotic analysis of inpainting via universal
- shearlet systems. SIAM J. Imag. Sci., 7: 2301-2339.
- Glenn, R.E., Demetrio, L. and Flavia, C., 2009. Shearlet-based total variation diffusion
- for denoising. IEEE Transact. Image Process., 18: 260-268.
- Guo, J.Y., Zhou, X.Y. and Yu, S.P., 1996. Iso-interval trace interpolation in F-X domain.
- OGP, 31: 28-34.
- Guo, K., Kutyniok, G. and Labate, D., 2006. Sparse multidimensional representations
- using anisotropic dilation und shear operators. Wavelets and Splines, Athens, GA.
- TN: 189-201.
- Hennenfent, G. and Herrmann, F.J., 2008. Simply denoise: wavefield reconstruction via
- jittered under-sampling. Geophysics, 73(3): V19-V28.
- Herrmann, F.J. and Hennenfent, G., 2008. Non-parametric seismic data recovery with
- curvelet frames. Geophys. J. Internat., 173: 233-248.
- Kong, D. and Peng, Z., 2015. Seismic random noise attenuation using shearlet and total
- generalized variation. J. Geophys. Engineer., 12: 1024-1035.
- Kutyniok, G. and Labate, D., 2007. Optimally sparse multidimensional representation
- using shearlets. SIAM J. Mathemat. Analys., 39: 298-318.
- Kutyniok, G. and Labate, D., 2009. Resolution of the wavefront set using continuous
- shearlets. Transact. Am. Mathemat. Soc., 361: 2719-2754.
- Kutyniok, G. and Labate, D., 2012. Introduction to Shearlets: Multiscale Analysis for
- Multivariate Data. Springer Verlag, New York.
- Kutyniok, G., Shahram, M. and Zhuang, X.S., 2012. ShearLab: A rational design of a
- digital parabolic scaling algorithm. SIAM J. Imag. Sci., 5: 1291-1332.
- Kutyniok, G. and Petersen, P., 2015. Classification of edges using compactly supported
- shearlets. Appl. Comput. Harmon. Anal., 42: 245-293.
- Kutyniok, G., Lim, W.Q. and Reisenhofer, R., 2016. Shearlab 3D: faithful digital shearlet
- transforms based on compactly supported shearlets. ACM Transact. Mathemat.
- Softw., 42(5): 1-42.
- Lim, W.Q., 2010. The discrete shearlets transform: a new directional transform and
- compactly supported shearlets transform. IEEE Transact. Image Process., 19:
- 1166-1180.
- Liu, J.C., Chou, Y.X. and Zhu, J.J., 2018. Interpolating seismic data via the POCS
- method based on shearlet transform. J. Geophys. Engineer., 15: 852-876.
- Liu, Y., Zhang, P. and Liu, C., 2017. Seismic data interpolation using generalised
- velocity-dependent seislet transform. Geophys. Prosp. 65(S1): 82-93.
- Ma, J.W., 2013. Three-dimensional irregular seismic data reconstruction via low-rank
- matrix completion. Geophysics, 78(5): V181-V192.
- Minh, N.D. and Vetterli, M., 2005. The contourlet transform: An efficient directional
- multiresolution image representation. IEEE Transact. Image Proc., 14: 2091-2106.
- Naghizadeh, M. and Sacchi, M. D. 2007 Multistep autogressive reconstruction of seismic
- records Geophysics 72(6) V111-V118.
- Naghizadeh, M. and Sacchi, M.D., 2009. F-x adaptive seismic-trace interpolation.
- Geophysics, 74(1): V9-V16.
- Naghizadeh, M. and Innanen, K.A., 2011. Seismic data interpolation using a fast
- generalized Fourier transform Geophysics 76(1) V1-V10.
- Nurul Kabir, M.M. and ,Verschuur, D.J., 1995. Restoration of missing offsets by
- parabolic Radon transform. Geophys. Prosp., 43: 347-368.
- Ozkan, M., Tekalp, M. and Sezan, M., 1994. POCS-based restoration of space-varying
- blurred images. IEEE Transact. Image Process., 3: 450-454.
- Patti, A., Sezan, M. and Tekalp, A., 1997. Superresolution video reconstruction with
- arbitrary sampling lattices and nonzereo aperture time. IEEE Transact. Image
- Process., 6: 1064-1076.
- Pein, A., Loock, S., Plonka, G. and Salditt, T., 2016. Using sparsity information for
- iterative phase retrieval in x-ray propagation imaging. Opt. Express, 24:
- 8332-8343.
- Pejoski, S., Kafedziski, V. and Gleich, D., 2015. Compressed sensing MRI using discrete
- nonseperable shearlet transform and FISTA. IEEE Sign. Process. Lett., 22:
- 1566-1570.
- Porsani, M., 1999. Seismic trace interpolation using half-step prediction filters.
- Geophysics, 64: 1461-1467.
- Reisenhofer, R., Kiefer, J. and King, E.J., 2016. Shearlet-based detection of flame fronts.
- Experim. Fluids, 57: 41.
- Ronen, J., 1987. Wave equation trace interpolation. Geophysics, 52: 973-984.
- Sheng, Y., Demetrio, L., Glenn, R.E. and Hamid, K., 2009. A shearlet approach to edge
- analysis and detection. IEEE Transact. Image Process., 18: 929-941.
- Spitz, S., 1991. Seismic trace interpolation in the F-X domain. Geophysics, 56: 785-794.
- Starck, J.L., Elad, M. and Donoho, D.L., 2005. Image decomposition via the combination
- of sparse representation and a variational approach. IEEE Transact. Image
- Process., 14: 1570-1582.
- Wang, B., Wu, R., Geng, Y. and Chen, X., 2014. Dreamlet-based interpolation using
- POCS method. J. Appl. Geophys., 109: 256-265.
- Wang, B., Wu, R., Chen, X. and Li, J., 2015. Simultaneous seismic data interpolation and
- denoising with a new adaptive method based on dreamlet transform. Geophys. J.
- Internat., 201: 1180-1192.
- Wang, B., 2016. An Efficient POCS Interpolation method in the frequency-space domain.
- IEEE Geosci. Remote Sens. Lett., 13: 1384-1387.
- Wang, B., Chen, X., Li, J. and Cao, J., 2016. An improved weighted Projection Onto
- Convex Sets method for seismic data interpolation and denoising. IEEE J. Select.
- Topics Appl. Earth Observat. Remote Sens., 9: 228-235.
- Wang, Q., 2010. The discrete shearlet transform: a new directional transform and
- compactly supported shearlet frames. IEEE Transact., 19: 1166-1180.
- Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation of
- nonuniformly sampled seismic records. J. Appl. Geophys., 79: 90-99.
- Zhou, X., 1997. Seismic trace interpolation in F-X domain. Oil Geophys. Prosp., 32:
- 154-162.
- Zhang, L., Han, L.G., Xu, D.X., Li, Y. and Li, H., 2017. Seismic data reconstruction with
- Shearlet transform based on compressed sensing technology. OGP, 52: 220-225.