ARTICLE

Seismic data reconstruction via complex shearlet transform and block coordinate relaxation

JICHENG LIU YA GU YONGXIN CHOU
Show Less
School of Electrical & Automatic Engineering, Changshu Institute of Technology. Changshu 215500, P.R. China,
JSE 2019, 28(4), 307–332;
Submitted: 1 May 2018 | Accepted: 12 February 2019 | Published: 1 August 2019
© 2019 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liu, J., Gu, Y. and Chou, Y.X., 2019. Seismic data reconstruction via complex shearlet transform and block coordinate relaxation. Journal of Seismic Exploration, 28: 307-332. Due to practical and economic limitations, real seismic data is not densely sampled in all coordinates, which will affect the subsequent seismic data processing steps, such as migration, surface-related multiple elimination and inversion. Therefore, it is necessary to reconstruct the incomplete seismic data. This paper explains the application of the complex shearlet transform to seismic data reconstruction. With a Z; constraint and the Block Coordinate Relaxation (BCR) method, performance of the complex shearlet-based, real shearlet-based and well-accepted curvelet-based reconstruction are compared in terms of recovered f-k spectrum and signal to noise ratio (SNR). We also discuss the shift invariance of the complex shearlet transform and compare the performances of the BCR and the widely used Projection Onto Convex Sets (POCS) method. The numerical experiments on synthetic and real data with different under-sampling rates demonstrate the validity of the proposed method, especially for the case of large amounts of traces missing.

Keywords
seismic data reconstruction
complex shearlet transform
curvelet transform
block coordinate relaxation
References
  1. Abma, R. and Kabir, N., 2006. 3D interpolation of irregular data with a POCS algorithm.Geophysics, 71(6): E91-E97.
  2. Alliney, S. and Ruzinsky, S.A., 1994. An algorithm for the minimization of mixed /,and /, norm with application to Bayesian estimation. IEEE Transact. SignalProcess., 42: 618-627
  3. Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W., 1975. Discrete Multivariate Analysis:Theory and Practice. MIT Press, Cambridge, MA.
  4. Bruce, A., Sardy, S. and Tseng P., 1998. Block coordinate relaxation methods fornonparametric signal de-noising. Proc. SPIE - The International Society for OpticalEngineering, 3391: 75-86.
  5. Cao, J., Wang, Y., Yang, C. and Zhao, J., 2011. A review on restoration of seismicwavefields based on regularization and compressive sensing. Inverse Probl. Sci.Engineer., 19: 679-704.
  6. Cao, J., Wang, Y. and Yang, C., 2012. Seismic data restoration based on compressivesensing using the regularization and zero-norm sparse optimization. Chin. J.Geophys., 55: 596-607.
  7. Cao, J. and Wang, Y., 2014. Seismic data restoration with a fast Li norm trust regionmethod. J. Geophys. Engineer., 11: 045010.
  8. Cao, J. Wang, Y. and Wang, B., 2015a. Accelerating seismic interpolation with agradient projection method based on tight frame property of curvelet. Explor.Geophys., 43: 253-260.
  9. Cao, J. and Zhao, J., 2015b. 3D seismic interpolation with a low redundancy, fast curvelettransform. J. Seismic Explor., 24: 121-134.
  10. Cao, J. and Wang, B., 2015c. An improved projection onto convex sets methods forsimultaneous interpolation and denoising. Chin. J. Geophys. (in Chinese), 58:2935-2947.
  11. Candés, E. and Donoho, D.L., 2004. New tight frames of curvelets and optimalrepresentation of objects with C singularities. Comm. Pure Appl. Math., 57:219-266.
  12. Chemingui, N. and Biondi, B., 2002. Seismic data reconstruction by inversion to commonoffset. Geophysics, 67: 1575-1585.
  13. Chen, S., Donoho, D.L. and Saunders, M., 1996. Atomic decomposition by basis pursuitTech. Report, Stanford University.
  14. Easley, G., Labate, D. and Lim, W.Q., 2008. Sparse directional image representationsusing the discrete shearlet transform. Appl. Computat. Harmon. Analys., 25:25-46.
  15. Feng, F., Wang, Z., Liu, C. and Wang, D., 2016. Seismic data reconstruction based onsparse constraint in the shearlet domain. Geophys. Prosp. Petrol., 55: 682-691.
  16. Fomel, S., 2003. Seismic reflection data interpolation with differential offset and shotcontinuation. Geophysics, 68: 733-744.
  17. Gao, J., Chen, X., Li, J., Liu, G.-C. and Ma, J., 2010. Irregular seismic data reconstructionbased on exponential threshold model of POCS method. Appl. Geophys. 72:229-238.
  18. Gao, J., Sacchi, M. and Chen, X., 2013. A fast reduced-rank interpolation method forprestack seismic volumes that depend on four spatial dimensions. Geophysics,78(1): V21-V30.
  19. Genzel, M. and Kutyniok, G., 2014. Asymptotic analysis of inpainting via universalshearlet systems. SIAM J. Imag. Sci., 7: 2301-2339.
  20. Glenn, R.E., Demetrio, L. and Flavia, C., 2009. Shearlet-based total variation diffusionfor denoising. IEEE Transact. Image Process., 18: 260-268.
  21. Guo, J.Y., Zhou, X.Y. and Yu, S.P., 1996. Iso-interval trace interpolation in F-X domain.OGP, 31: 28-34.
  22. Guo, K., Kutyniok, G. and Labate, D., 2006. Sparse multidimensional representationsusing anisotropic dilation und shear operators. Wavelets and Splines, Athens, GA.TN: 189-201.
  23. Hennenfent, G. and Herrmann, F.J., 2008. Simply denoise: wavefield reconstruction viajittered under-sampling. Geophysics, 73(3): V19-V28.
  24. Herrmann, F.J. and Hennenfent, G., 2008. Non-parametric seismic data recovery withcurvelet frames. Geophys. J. Internat., 173: 233-248.
  25. Kong, D. and Peng, Z., 2015. Seismic random noise attenuation using shearlet and totalgeneralized variation. J. Geophys. Engineer., 12: 1024-1035.
  26. Kutyniok, G. and Labate, D., 2007. Optimally sparse multidimensional representationusing shearlets. SIAM J. Mathemat. Analys., 39: 298-318.
  27. Kutyniok, G. and Labate, D., 2009. Resolution of the wavefront set using continuousshearlets. Transact. Am. Mathemat. Soc., 361: 2719-2754.
  28. Kutyniok, G. and Labate, D., 2012. Introduction to Shearlets: Multiscale Analysis forMultivariate Data. Springer Verlag, New York.
  29. Kutyniok, G., Shahram, M. and Zhuang, X.S., 2012. ShearLab: A rational design of adigital parabolic scaling algorithm. SIAM J. Imag. Sci., 5: 1291-1332.
  30. Kutyniok, G. and Petersen, P., 2015. Classification of edges using compactly supportedshearlets. Appl. Comput. Harmon. Anal., 42: 245-293.
  31. Kutyniok, G., Lim, W.Q. and Reisenhofer, R., 2016. Shearlab 3D: faithful digital shearlettransforms based on compactly supported shearlets. ACM Transact. Mathemat.Softw., 42(5): 1-42.
  32. Lim, W.Q., 2010. The discrete shearlets transform: a new directional transform andcompactly supported shearlets transform. IEEE Transact. Image Process., 19:1166-1180.
  33. Liu, J.C., Chou, Y.X. and Zhu, J.J., 2018. Interpolating seismic data via the POCSmethod based on shearlet transform. J. Geophys. Engineer., 15: 852-876.
  34. Liu, Y., Zhang, P. and Liu, C., 2017. Seismic data interpolation using generalisedvelocity-dependent seislet transform. Geophys. Prosp. 65(S1): 82-93.
  35. Ma, J.W., 2013. Three-dimensional irregular seismic data reconstruction via low-rankmatrix completion. Geophysics, 78(5): V181-V192.
  36. Minh, N.D. and Vetterli, M., 2005. The contourlet transform: An efficient directionalmultiresolution image representation. IEEE Transact. Image Proc., 14: 2091-2106.
  37. Naghizadeh, M. and Sacchi, M. D. 2007 Multistep autogressive reconstruction of seismicrecords Geophysics 72(6) V111-V118.
  38. Naghizadeh, M. and Sacchi, M.D., 2009. F-x adaptive seismic-trace interpolation.Geophysics, 74(1): V9-V16.
  39. Naghizadeh, M. and Innanen, K.A., 2011. Seismic data interpolation using a fastgeneralized Fourier transform Geophysics 76(1) V1-V10.
  40. Nurul Kabir, M.M. and ,Verschuur, D.J., 1995. Restoration of missing offsets byparabolic Radon transform. Geophys. Prosp., 43: 347-368.
  41. Ozkan, M., Tekalp, M. and Sezan, M., 1994. POCS-based restoration of space-varyingblurred images. IEEE Transact. Image Process., 3: 450-454.
  42. Patti, A., Sezan, M. and Tekalp, A., 1997. Superresolution video reconstruction witharbitrary sampling lattices and nonzereo aperture time. IEEE Transact. ImageProcess., 6: 1064-1076.
  43. Pein, A., Loock, S., Plonka, G. and Salditt, T., 2016. Using sparsity information foriterative phase retrieval in x-ray propagation imaging. Opt. Express, 24:8332-8343.
  44. Pejoski, S., Kafedziski, V. and Gleich, D., 2015. Compressed sensing MRI using discretenonseperable shearlet transform and FISTA. IEEE Sign. Process. Lett., 22:1566-1570.
  45. Porsani, M., 1999. Seismic trace interpolation using half-step prediction filters.Geophysics, 64: 1461-1467.
  46. Reisenhofer, R., Kiefer, J. and King, E.J., 2016. Shearlet-based detection of flame fronts.Experim. Fluids, 57: 41.
  47. Ronen, J., 1987. Wave equation trace interpolation. Geophysics, 52: 973-984.
  48. Sheng, Y., Demetrio, L., Glenn, R.E. and Hamid, K., 2009. A shearlet approach to edgeanalysis and detection. IEEE Transact. Image Process., 18: 929-941.
  49. Spitz, S., 1991. Seismic trace interpolation in the F-X domain. Geophysics, 56: 785-794.
  50. Starck, J.L., Elad, M. and Donoho, D.L., 2005. Image decomposition via the combinationof sparse representation and a variational approach. IEEE Transact. ImageProcess., 14: 1570-1582.
  51. Wang, B., Wu, R., Geng, Y. and Chen, X., 2014. Dreamlet-based interpolation usingPOCS method. J. Appl. Geophys., 109: 256-265.
  52. Wang, B., Wu, R., Chen, X. and Li, J., 2015. Simultaneous seismic data interpolation anddenoising with a new adaptive method based on dreamlet transform. Geophys. J.Internat., 201: 1180-1192.
  53. Wang, B., 2016. An Efficient POCS Interpolation method in the frequency-space domain.IEEE Geosci. Remote Sens. Lett., 13: 1384-1387.
  54. Wang, B., Chen, X., Li, J. and Cao, J., 2016. An improved weighted Projection Onto
  55. Convex Sets method for seismic data interpolation and denoising. IEEE J. Select.
  56. Topics Appl. Earth Observat. Remote Sens., 9: 228-235.
  57. Wang, Q., 2010. The discrete shearlet transform: a new directional transform andcompactly supported shearlet frames. IEEE Transact., 19: 1166-1180.
  58. Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation ofnonuniformly sampled seismic records. J. Appl. Geophys., 79: 90-99.
  59. Zhou, X., 1997. Seismic trace interpolation in F-X domain. Oil Geophys. Prosp., 32:154-162.
  60. Zhang, L., Han, L.G., Xu, D.X., Li, Y. and Li, H., 2017. Seismic data reconstruction with
  61. Shearlet transform based on compressed sensing technology. OGP, 52: 220-225.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing