Iterative adaptive approach for seismic data restoration

Dai, Z.G., Liu, Z.H. and Wang, J.Y., 2019. Iterative adaptive approach for seismic data restoration. Journal of Seismic Exploration, 28: 333-345. Reconstruction of missing traces of seismic data from finite samples is a problem in seismic data processing. In this paper, an iterative adaptive approach is proposed to restore seismic data with randomly missing traces, specifically, which is suitable to recover a large number of missing traces. The proposed method is based upon the weighted least square theory. Unlike previous low-rank methods that use the low-rank property of the Hankel matrix on each frequency slice, we exploit the harmonic structure of frequency slice, and develop an iterative adaptive manner for seismic temporal frequency slices to obtain an accurate spectral estimation. The missing data is filled using a linear minimum mean-squared error estimator. Numerical experiments show that our method provides much better performance for reconstruction compared to that of the classical low-rank methods such as iterative soft thresholding, low-rank matrix fitting and orthogonal rank-one matrix pursuit.
- Bagaini, C. and Spagnolini, U., 1993. Common shot velocity analysis by shot
- continuation operator. Expanded Abstr., 63rd Ann. Internat. SEG Mtg., Washington
- D.C.: 673-676.
- Bolondi, G., Loinger, E. and Rocca, F., 1982. Offset continuation of seismic sections.
- Geophys. Prosp., 30: 813-828.
- Claerbout, J.F. and Nichols, D., 1991. Interpolation beyond aliasing by (t,x)-domain
- PEFs. Extended Abstr., 53rd EAEG Conf., Florence: 2-3.
- Canning, A. and Gardner, G., 1996. Regularizing 3D data sets with DMO. Geophysics,
- 61: 1846-1858.
- Cai, J.F., Candés, E.J. and Shen, Z., 2010. A singular value thresholding algorithm for
- matrix completion. Siam J. Opt, 20: 1956-1982.
- Chen, K. and Sacchi, M.D., 2015. Robust reduced-rank filtering for erratic seismic noise
- attenuation. Geophysics, 80: 1-11.
- Deregowski, S.M., 1986. What is DMO? First Break, 4: 7-24.
- Duijndam, A.J.W. and Schonewille, M.A., 1999. Nonuniform fast Fourier transform.
- Geophysics, 64: 539-551.
- Feng, W.K., Guo, Y.D., He, X.Y., Liu, H.W. and Guo, J., 2018. Jointly iterative adaptive
- approach based space time adaptive processing using MIMO Radar. IEEE Access, 6:
- 26605-26616.
- Glentis, G.O. and Jakobsson, A., 2011. Superfast approximative implementation of the iaa
- spectral estimate. IEEE Transact. Signal Process., 60: 472-478.
- Herrmann, F.J. and Hennenfent, G., 2008. Non-parametric seismic data recovery with
- curvelet frames. Geophys. J. Internat., 173: 233-248.
- Hennenfent, G., Fenelon, L. and Herrmann, F.J., 2010. Nonequispaced curvelet transform
- for seismic data reconstruction: A sparsity-promoting approach. Geophysics, 75:
- WB203-WB210.
- Kabir, M.M.N. and Verschuur, D.J., 1995. Restoration of missing offsets by parabolic
- Radon transform. Geophys. Prospect, 43: 347-368.
- Karlsson, J., Rowe, W., Xu, L. and Glentis, G.O., 2014. Fast missing-data iaa with
- application to notched spectrum sar. IEEE Trans. Aerosp. Electron. Syst., 50: 959-971.
- Liu, and Sacchi, M.D., 2004. Minimum weighted norm interpolation of seismic records.
- Geophysics, 69: 1560-1568.
- Li, C., Liu, G.C., Hao, Z.J., Zu, S.H., Mi, F. and Chen, X.H., 2018. Multidimensional
- seismic data reconstruction using frequency-domain adaptive prediction-error filter.
- IEEE Transact. Geosci. Remote Sens., 56: 2328-2336.
- Ma, J.W., 2013. Three-dimensional irregular seismic data reconstruction via low-rank
- matrix completion. Geophysics, 78: 181-192.
- Naghizadeh, M. and Sacchi, M.D., 2010. Beyond alias hierarchical scale curvelet
- interpolation of regularly and irregularly sampled seismic data. Geophysics, 75:
- WB189-WB202.
- Oropeza, V. and Sacchi, M.D., 2011. Simultaneous seismic data denoising and
- reconstruction via multichannel singular spectrum analysis. Geophysics, 76: 25-32.
- Spitz, S., 1991. Seismic trace interpolation in the FX domain. Geophysics, 56: 785-794.
- Sacchi, M.D. and Ulrych, T.J., 1995. High-resolution velocity gathers and offset space
- reconstruction. Geophysics, 60: 1169-1177.
- Sayed, A., 2003. Fundamentals of Adaptive Filtering. Wiley, New York.
- Stoica, P., Li, J. and Ling, J., 2009 Missing data recovery via a non-parametric iterative
- adaptive approach. IEEE Sign. Process. Lett., 16: 241-244.
- Thorson, J.R., 1985. Velocity stack and slant stochastic inversion. Geophysics, 50:
- 2727-2741.
- Trickett, S., Burroughs, L., Milton, A., Walton, L. and Dack, R., 2010.
- Rank-reduction-based trace interpolation. Expanded Abstr., 80th Ann. Internat. SEG
- Mtg., Denver: 3829-3833.
- Wen, Z.W., Yin, W.T. and Zhang, Y., 2012. Solving a low-rank factorization model for
- matrix completion by a nonlinear successive over-relaxation algorithm. Math. Prog.
- Computat., 4: 333-361.
- Wang, Z., Lai, M.J., Lu, Z.S., Fan, W., Davulcu, H. and Ye, J.P., 2014. Orthogonal
- rank-one matrix pursuit for low rank matrix completion. SIAM J. Sci. Comput., 37:
- A488-A514.
- Xue, M., Xu, L. and Li, J. 2011. Iaa spectral estimation: fast implementation using the
- gohberg—semencul factorization. IEEE Transact. Signal Process., 59: 3251-3261.
- Yardibi, T., Li, J., Stoica, P. and Xue, M., 2010. Source localization and sensing: A
- non-parametric iterative adaptive approach based on weighted least squares. IEEE
- Transact. Aerosp. Electron. Syst., 46: 425-443.
- Zwartjes, P.M. and Sacchi, M.D. 2006. Fourier reconstruction of nonuniformly sampled,
- aliased seismic data. Geophysics, 72: V21-V32.
- Zhang, H., Chen, X. and Li, H., 2015. 3D seismic data reconstruction based on
- complex-valued curvelet transform in frequency domain. J. Appl. Geophys., 113:
- 64-73.
- Zhang, Y.C., Li, W.C., Zhang, Y., Huang, Y.L. and Yang, J.Y., 2016. A fast iterative
- adaptive approach for scanning radar angular superresolution. IEEE J. Select. Topics
- Appl. Earth Observ., 8: 5336-5345.