ARTICLE

Iterative adaptive approach for seismic data restoration

ZHIGANG DAI ZHIHUI LIU JINYAN WANG
Show Less
School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P.R. China,
JSE 2019, 28(4), 333–345;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Dai, Z.G., Liu, Z.H. and Wang, J.Y., 2019. Iterative adaptive approach for seismic data restoration. Journal of Seismic Exploration, 28: 333-345. Reconstruction of missing traces of seismic data from finite samples is a problem in seismic data processing. In this paper, an iterative adaptive approach is proposed to restore seismic data with randomly missing traces, specifically, which is suitable to recover a large number of missing traces. The proposed method is based upon the weighted least square theory. Unlike previous low-rank methods that use the low-rank property of the Hankel matrix on each frequency slice, we exploit the harmonic structure of frequency slice, and develop an iterative adaptive manner for seismic temporal frequency slices to obtain an accurate spectral estimation. The missing data is filled using a linear minimum mean-squared error estimator. Numerical experiments show that our method provides much better performance for reconstruction compared to that of the classical low-rank methods such as iterative soft thresholding, low-rank matrix fitting and orthogonal rank-one matrix pursuit.

Keywords
seismic data restoration
iterative adaptive approach
weighted least squares
spectral estimation
References
  1. Bagaini, C. and Spagnolini, U., 1993. Common shot velocity analysis by shot
  2. continuation operator. Expanded Abstr., 63rd Ann. Internat. SEG Mtg., Washington
  3. D.C.: 673-676.
  4. Bolondi, G., Loinger, E. and Rocca, F., 1982. Offset continuation of seismic sections.
  5. Geophys. Prosp., 30: 813-828.
  6. Claerbout, J.F. and Nichols, D., 1991. Interpolation beyond aliasing by (t,x)-domain
  7. PEFs. Extended Abstr., 53rd EAEG Conf., Florence: 2-3.
  8. Canning, A. and Gardner, G., 1996. Regularizing 3D data sets with DMO. Geophysics,
  9. 61: 1846-1858.
  10. Cai, J.F., Candés, E.J. and Shen, Z., 2010. A singular value thresholding algorithm for
  11. matrix completion. Siam J. Opt, 20: 1956-1982.
  12. Chen, K. and Sacchi, M.D., 2015. Robust reduced-rank filtering for erratic seismic noise
  13. attenuation. Geophysics, 80: 1-11.
  14. Deregowski, S.M., 1986. What is DMO? First Break, 4: 7-24.
  15. Duijndam, A.J.W. and Schonewille, M.A., 1999. Nonuniform fast Fourier transform.
  16. Geophysics, 64: 539-551.
  17. Feng, W.K., Guo, Y.D., He, X.Y., Liu, H.W. and Guo, J., 2018. Jointly iterative adaptive
  18. approach based space time adaptive processing using MIMO Radar. IEEE Access, 6:
  19. 26605-26616.
  20. Glentis, G.O. and Jakobsson, A., 2011. Superfast approximative implementation of the iaa
  21. spectral estimate. IEEE Transact. Signal Process., 60: 472-478.
  22. Herrmann, F.J. and Hennenfent, G., 2008. Non-parametric seismic data recovery with
  23. curvelet frames. Geophys. J. Internat., 173: 233-248.
  24. Hennenfent, G., Fenelon, L. and Herrmann, F.J., 2010. Nonequispaced curvelet transform
  25. for seismic data reconstruction: A sparsity-promoting approach. Geophysics, 75:
  26. WB203-WB210.
  27. Kabir, M.M.N. and Verschuur, D.J., 1995. Restoration of missing offsets by parabolic
  28. Radon transform. Geophys. Prospect, 43: 347-368.
  29. Karlsson, J., Rowe, W., Xu, L. and Glentis, G.O., 2014. Fast missing-data iaa with
  30. application to notched spectrum sar. IEEE Trans. Aerosp. Electron. Syst., 50: 959-971.
  31. Liu, and Sacchi, M.D., 2004. Minimum weighted norm interpolation of seismic records.
  32. Geophysics, 69: 1560-1568.
  33. Li, C., Liu, G.C., Hao, Z.J., Zu, S.H., Mi, F. and Chen, X.H., 2018. Multidimensional
  34. seismic data reconstruction using frequency-domain adaptive prediction-error filter.
  35. IEEE Transact. Geosci. Remote Sens., 56: 2328-2336.
  36. Ma, J.W., 2013. Three-dimensional irregular seismic data reconstruction via low-rank
  37. matrix completion. Geophysics, 78: 181-192.
  38. Naghizadeh, M. and Sacchi, M.D., 2010. Beyond alias hierarchical scale curvelet
  39. interpolation of regularly and irregularly sampled seismic data. Geophysics, 75:
  40. WB189-WB202.
  41. Oropeza, V. and Sacchi, M.D., 2011. Simultaneous seismic data denoising and
  42. reconstruction via multichannel singular spectrum analysis. Geophysics, 76: 25-32.
  43. Spitz, S., 1991. Seismic trace interpolation in the FX domain. Geophysics, 56: 785-794.
  44. Sacchi, M.D. and Ulrych, T.J., 1995. High-resolution velocity gathers and offset space
  45. reconstruction. Geophysics, 60: 1169-1177.
  46. Sayed, A., 2003. Fundamentals of Adaptive Filtering. Wiley, New York.
  47. Stoica, P., Li, J. and Ling, J., 2009 Missing data recovery via a non-parametric iterative
  48. adaptive approach. IEEE Sign. Process. Lett., 16: 241-244.
  49. Thorson, J.R., 1985. Velocity stack and slant stochastic inversion. Geophysics, 50:
  50. 2727-2741.
  51. Trickett, S., Burroughs, L., Milton, A., Walton, L. and Dack, R., 2010.
  52. Rank-reduction-based trace interpolation. Expanded Abstr., 80th Ann. Internat. SEG
  53. Mtg., Denver: 3829-3833.
  54. Wen, Z.W., Yin, W.T. and Zhang, Y., 2012. Solving a low-rank factorization model for
  55. matrix completion by a nonlinear successive over-relaxation algorithm. Math. Prog.
  56. Computat., 4: 333-361.
  57. Wang, Z., Lai, M.J., Lu, Z.S., Fan, W., Davulcu, H. and Ye, J.P., 2014. Orthogonal
  58. rank-one matrix pursuit for low rank matrix completion. SIAM J. Sci. Comput., 37:
  59. A488-A514.
  60. Xue, M., Xu, L. and Li, J. 2011. Iaa spectral estimation: fast implementation using the
  61. gohberg—semencul factorization. IEEE Transact. Signal Process., 59: 3251-3261.
  62. Yardibi, T., Li, J., Stoica, P. and Xue, M., 2010. Source localization and sensing: A
  63. non-parametric iterative adaptive approach based on weighted least squares. IEEE
  64. Transact. Aerosp. Electron. Syst., 46: 425-443.
  65. Zwartjes, P.M. and Sacchi, M.D. 2006. Fourier reconstruction of nonuniformly sampled,
  66. aliased seismic data. Geophysics, 72: V21-V32.
  67. Zhang, H., Chen, X. and Li, H., 2015. 3D seismic data reconstruction based on
  68. complex-valued curvelet transform in frequency domain. J. Appl. Geophys., 113:
  69. 64-73.
  70. Zhang, Y.C., Li, W.C., Zhang, Y., Huang, Y.L. and Yang, J.Y., 2016. A fast iterative
  71. adaptive approach for scanning radar angular superresolution. IEEE J. Select. Topics
  72. Appl. Earth Observ., 8: 5336-5345.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing