ARTICLE

Seismic wavelet phase estimation by l1-norm minimization

GABRIEL R. GELPI1,2 DANIEL O. PÉREZ1,3 DANILO R. VELIS1
Show Less
1 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and CONICET, La Plata, Argentina.,
2 YPF Tecnología S.A., Av. Del Petróleo s/n, Berisso, Argentina.,
JSE 2019, 28(4), 393–411;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Gelpi, G.R., Pérez, D.O. and Velis, D.R., 2019. Seismic wavelet phase estimation by //- norm minimization. Journal of Seismic Exploration, 28: 393-411. A new method to estimate the phase of the wavelet when only seismic data is available is presented. Starting from the classical convolutional model of the seismic traces, the proposed technique is based in two hypotheses: (1) the wavelet phase can be adequately approximated by a constant; and (2) the series of reflection coefficients is non-Gaussian and/or sparse. Under these hypotheses, the deconvolution is viewed as an inverse problem regularized by the /;-norm. The optimum wavelet phase is then obtained by selecting the constant phase rotation that leads to the deconvolved trace with minimum /;-norm. We test the proposed method on synthetic and field data and we compare the results against those obtained by the classical method based on the Kurtosis maximization of the seismic data. The results show that the proposed technique is more accurate and reliable than the Kurtosis-based approach, especially when the effective data bandwidth is relatively poor and/or the non-Gaussianity hyphotesis is not fully satisfied.

Keywords
/
-norm
sparse-deconvolution
wavelet
phase
Kurtosis
FISTA
References
  1. Beaton, A., and Turkey, J., 1974. The fitting of power series, meaning polynomials,
  2. illustrated on band-spectroscopic data. Technometrics, 16: 147-185.
  3. Beck, A., and Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for
  4. linear inverse problems. SIAM J. Imag. Sci., 2: 183-202.
  5. Bioucas-Dias, J.M. and Figueiredo, M.A.T., 2007, A new twist: Two-step iterative
  6. shrinkage/thresholding algorithms for image restoration: IEEE Transact. Image
  7. Process., 16: 2992-3004.
  8. Daubechies, I., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for
  9. linear inverse problems with a sparsity constraint. Commun. Pure Appl.
  10. Mathemat., 57: 14131457.
  11. Edgar, J., and van der Baan, M., 2011. How reliable is statistical wavelet estimation?
  12. Geophysics, 76: V59-V68.
  13. Farquharson, C.G. and Oldenburg, D.W., 2004. A comparison of automatic techniques
  14. for estimating the regularization parameter in non-linear inverse problems.
  15. Geophys. J. Internat., 156: 411-425.
  16. Figueiredo, M.A.T., Nowak, R.D. and Wright, S.J., 2007. Gradient projection for sparse
  17. reconstruction: Application to compressed sensing and other inverse problems.
  18. IEEE J. select. Top. Sign. Process., 1: 586-597.
  19. Gramfort, A., Strohmeier, D., Haueisen, J., Hmlinen, M. and Kowalski, M., 2013. Time-
  20. frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary
  21. source activations. Neurolmage, 70: 410-422.
  22. Hennenfent, G., van den Berg, E., Friedlander, M.P. and Hermann, F.J., 2008. New
  23. insights into one-norm solvers from the Pareto curve. Geophysics, 73: 23-26.
  24. Herron, D., 2011. First Steps in Seismic Interpretation. SEG, Tulsa, OK.
  25. Lazear, G., 1993. Mixed-phase wavelet estimation using fourth-order cumulants.
  26. Geophysics, 58: 1042-1051.
  27. Levy, S. and Oldenburg, D.W., 1987. Automatic phase correction of common-midpoints
  28. stacked data. Geophysics, 52: P51-P59.
  29. Longbottom, J., Walden, A.T. and White, R.E., 1988. Principles and application of
  30. maximum Kurtosis phase estimation. Geophys. Prosp., 36: 115-138.
  31. Lu, W., 2005. Non-minimum-phase wavelet estimation using second and third-order
  32. moments. Geophys. Prosp., 53: 149-158.
  33. Ma, M., Wang, S., Yuan, S., Wang, J., Wang, T., Haueisen, J., Hmlinen, M. and
  34. Kowalski, M., 2015. The comparison of skewness and Kurtosis criteria for
  35. wavelet phase estimation. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New
  36. Orleans: 5164-5168.
  37. Malinverno, A. and Briggs, V.A., 2004. Expanded uncertainty quantification in inverse
  38. problems: Hierarchical bayes and empirical bayes. Geophysics, 69: 1005-1016.
  39. Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade for
  40. Marmousi. The Leading Edge, 25: 156-166.
  41. Neidell, N., 1991. Could the processed seismic wavelet be simpler than we think?
  42. Geophysics, 56: P681-P690.
  43. Oldenburg, D.W., Scheuer, T. and Levy, S., 1983. Recovery of the acoustic impedance
  44. from reflection seismograms. Geophysics, 48: 1318-1337.
  45. Pérez, D.O., Velis, D.R. and Sacchi, M.D., 2013. High-resolution prestack seismic
  46. inversion using a hybrid FISTA least-squares strategy. Geophysics, 78: R185-
  47. R195.
  48. Pérez, D.O., Velis, D.R. and Sacchi, M.D., 2017. Three-term inversion of prestack
  49. seismic data using a weighted />; mixed norm. Geophys. Prosp., 65, 1477-1495.
  50. Robinson, E.A. and Treitel, S., 2002. Geophysical Signal Analysis. SEG, Tulsa, OK.
  51. Sacchi, M.D., 1997. Reweighting strategies in seismic deconvolution. Geophys. J.
  52. Internat., 129: 651-656.
  53. Taylor, H.L., Banks, S.C. and McCoy, J.F., 1979. Deconvolution with the /; norm:
  54. Geophysics, 44: 39-52.
  55. Tugnait, J., 1987. Identification of linear stochastic systems via second- and fourth-order
  56. cumulant matching. IEEE Trans. Info. Theory, IT-33: 393-407.
  57. van den Berg, E. and Friedlander, M., 2008. Probing the Pareto frontier for basis pursuit
  58. solutions. SIAM J. Sci. Comput., 31: 890-912.
  59. van der Bann, M., 2008. Time-varying wavelet estimation and deconvolution by Kurtosis
  60. maximization. Geophysics, 73: V11-V18.
  61. van der Bann, M. and Fomel, S., 2009. Nonstationary phase estimation using regularized
  62. local Kurtosis maximization. Geophysics, 73: A75-A80.
  63. Velis, D.R., 2003. Estimating the distribution of primary reflection coefficients.
  64. Geophysics, 68: 1417-1422.
  65. Velis, D.R., 2008. Stochastic sparse-spike deconvolution. Geophysics, 73, RI-R9.
  66. Velis, D.R. and Ulrych, T.J., 1996. Simulated annealing wavelet estimation via fourth-
  67. order cumulant matching. Geophysics, 61: 1939-1948.
  68. Walden, A. and Hosken, J., 1986. The nature of the non-Gaussianity of primary reflection
  69. coefficients and its significance for deconvolution. Geophys. Prosp., 34: 1038-
  70. Wang, Z., Zhang, B. and Gao, J., 2014. The residual phase estimation of a seismic
  71. wavelet using a Rényi divergence-based criterion. J. Appl. Geophys., 11: 96-105.
  72. White, R., 1988. Maximum Kurtosis phase correction. Geophys. J. Internat., 95: 371-389.
  73. Xu, Y., Thore, P. and Duchenne, S., 2012. The reliability of the Kurtosis-based wavelet
  74. estimation. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
  75. Yilmaz, O., 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of
  76. Seismic Data. Investigations in Geophysics, SEG, Tulsa, OK.
  77. Yuan, S.Y. and Wang, X., 2011. Influence of inaccurate wavelet phase estimation on
  78. seismic inversion. Appl. Geophys., 8: 48-59.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing