Cite this article
1
Download
39
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Seismic wavelet phase estimation by l1-norm minimization

GABRIEL R. GELPI1,2 DANIEL O. PÉREZ1,3 DANILO R. VELIS1
Show Less
1 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and CONICET, La Plata, Argentina.,
2 YPF Tecnología S.A., Av. Del Petróleo s/n, Berisso, Argentina.,
JSE 2019, 28(4), 393–411;
Submitted: 16 August 2018 | Accepted: 10 May 2019 | Published: 1 August 2019
© 2019 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Gelpi, G.R., Pérez, D.O. and Velis, D.R., 2019. Seismic wavelet phase estimation by //- norm minimization. Journal of Seismic Exploration, 28: 393-411. A new method to estimate the phase of the wavelet when only seismic data is available is presented. Starting from the classical convolutional model of the seismic traces, the proposed technique is based in two hypotheses: (1) the wavelet phase can be adequately approximated by a constant; and (2) the series of reflection coefficients is non-Gaussian and/or sparse. Under these hypotheses, the deconvolution is viewed as an inverse problem regularized by the /;-norm. The optimum wavelet phase is then obtained by selecting the constant phase rotation that leads to the deconvolved trace with minimum /;-norm. We test the proposed method on synthetic and field data and we compare the results against those obtained by the classical method based on the Kurtosis maximization of the seismic data. The results show that the proposed technique is more accurate and reliable than the Kurtosis-based approach, especially when the effective data bandwidth is relatively poor and/or the non-Gaussianity hyphotesis is not fully satisfied.

Keywords
/
-norm
sparse-deconvolution
wavelet
phase
Kurtosis
FISTA
References
  1. Beaton, A., and Turkey, J., 1974. The fitting of power series, meaning polynomials,illustrated on band-spectroscopic data. Technometrics, 16: 147-185.
  2. Beck, A., and Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm forlinear inverse problems. SIAM J. Imag. Sci., 2: 183-202.
  3. Bioucas-Dias, J.M. and Figueiredo, M.A.T., 2007, A new twist: Two-step iterativeshrinkage/thresholding algorithms for image restoration: IEEE Transact. ImageProcess., 16: 2992-3004.
  4. Daubechies, I., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm forlinear inverse problems with a sparsity constraint. Commun. Pure Appl.Mathemat., 57: 14131457.
  5. Edgar, J., and van der Baan, M., 2011. How reliable is statistical wavelet estimation?Geophysics, 76: V59-V68.
  6. Farquharson, C.G. and Oldenburg, D.W., 2004. A comparison of automatic techniquesfor estimating the regularization parameter in non-linear inverse problems.Geophys. J. Internat., 156: 411-425.
  7. Figueiredo, M.A.T., Nowak, R.D. and Wright, S.J., 2007. Gradient projection for sparsereconstruction: Application to compressed sensing and other inverse problems.IEEE J. select. Top. Sign. Process., 1: 586-597.
  8. Gramfort, A., Strohmeier, D., Haueisen, J., Hmlinen, M. and Kowalski, M., 2013. Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationarysource activations. Neurolmage, 70: 410-422.
  9. Hennenfent, G., van den Berg, E., Friedlander, M.P. and Hermann, F.J., 2008. Newinsights into one-norm solvers from the Pareto curve. Geophysics, 73: 23-26.
  10. Herron, D., 2011. First Steps in Seismic Interpretation. SEG, Tulsa, OK.
  11. Lazear, G., 1993. Mixed-phase wavelet estimation using fourth-order cumulants.Geophysics, 58: 1042-1051.
  12. Levy, S. and Oldenburg, D.W., 1987. Automatic phase correction of common-midpointsstacked data. Geophysics, 52: P51-P59.
  13. Longbottom, J., Walden, A.T. and White, R.E., 1988. Principles and application ofmaximum Kurtosis phase estimation. Geophys. Prosp., 36: 115-138.
  14. Lu, W., 2005. Non-minimum-phase wavelet estimation using second and third-ordermoments. Geophys. Prosp., 53: 149-158.
  15. Ma, M., Wang, S., Yuan, S., Wang, J., Wang, T., Haueisen, J., Hmlinen, M. and
  16. Kowalski, M., 2015. The comparison of skewness and Kurtosis criteria forwavelet phase estimation. Expanded Abstr., 85th Ann. Internat. SEG Mtg., NewOrleans: 5164-5168.
  17. Malinverno, A. and Briggs, V.A., 2004. Expanded uncertainty quantification in inverseproblems: Hierarchical bayes and empirical bayes. Geophysics, 69: 1005-1016.
  18. Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade forMarmousi. The Leading Edge, 25: 156-166.
  19. Neidell, N., 1991. Could the processed seismic wavelet be simpler than we think?Geophysics, 56: P681-P690.
  20. Oldenburg, D.W., Scheuer, T. and Levy, S., 1983. Recovery of the acoustic impedancefrom reflection seismograms. Geophysics, 48: 1318-1337.
  21. Pérez, D.O., Velis, D.R. and Sacchi, M.D., 2013. High-resolution prestack seismicinversion using a hybrid FISTA least-squares strategy. Geophysics, 78: R185-R195.
  22. Pérez, D.O., Velis, D.R. and Sacchi, M.D., 2017. Three-term inversion of prestackseismic data using a weighted />; mixed norm. Geophys. Prosp., 65, 1477-1495.
  23. Robinson, E.A. and Treitel, S., 2002. Geophysical Signal Analysis. SEG, Tulsa, OK.
  24. Sacchi, M.D., 1997. Reweighting strategies in seismic deconvolution. Geophys. J.Internat., 129: 651-656.
  25. Taylor, H.L., Banks, S.C. and McCoy, J.F., 1979. Deconvolution with the /; norm:Geophysics, 44: 39-52.
  26. Tugnait, J., 1987. Identification of linear stochastic systems via second- and fourth-ordercumulant matching. IEEE Trans. Info. Theory, IT-33: 393-407.van den Berg, E. and Friedlander, M., 2008. Probing the Pareto frontier for basis pursuitsolutions. SIAM J. Sci. Comput., 31: 890-912.van der Bann, M., 2008. Time-varying wavelet estimation and deconvolution by Kurtosismaximization. Geophysics, 73: V11-V18.van der Bann, M. and Fomel, S., 2009. Nonstationary phase estimation using regularizedlocal Kurtosis maximization. Geophysics, 73: A75-A80.
  27. Velis, D.R., 2003. Estimating the distribution of primary reflection coefficients.Geophysics, 68: 1417-1422.
  28. Velis, D.R., 2008. Stochastic sparse-spike deconvolution. Geophysics, 73, RI-R9.
  29. Velis, D.R. and Ulrych, T.J., 1996. Simulated annealing wavelet estimation via fourth-order cumulant matching. Geophysics, 61: 1939-1948.
  30. Walden, A. and Hosken, J., 1986. The nature of the non-Gaussianity of primary reflectioncoefficients and its significance for deconvolution. Geophys. Prosp., 34: 1038-
  31. Wang, Z., Zhang, B. and Gao, J., 2014. The residual phase estimation of a seismicwavelet using a Rényi divergence-based criterion. J. Appl. Geophys., 11: 96-105.
  32. White, R., 1988. Maximum Kurtosis phase correction. Geophys. J. Internat., 95: 371-389.
  33. Xu, Y., Thore, P. and Duchenne, S., 2012. The reliability of the Kurtosis-based waveletestimation. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
  34. Yilmaz, O., 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of
  35. Seismic Data. Investigations in Geophysics, SEG, Tulsa, OK.
  36. Yuan, S.Y. and Wang, X., 2011. Influence of inaccurate wavelet phase estimation onseismic inversion. Appl. Geophys., 8: 48-59.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing