Seismic wavelet phase estimation by l1-norm minimization

Gelpi, G.R., Pérez, D.O. and Velis, D.R., 2019. Seismic wavelet phase estimation by //- norm minimization. Journal of Seismic Exploration, 28: 393-411. A new method to estimate the phase of the wavelet when only seismic data is available is presented. Starting from the classical convolutional model of the seismic traces, the proposed technique is based in two hypotheses: (1) the wavelet phase can be adequately approximated by a constant; and (2) the series of reflection coefficients is non-Gaussian and/or sparse. Under these hypotheses, the deconvolution is viewed as an inverse problem regularized by the /;-norm. The optimum wavelet phase is then obtained by selecting the constant phase rotation that leads to the deconvolved trace with minimum /;-norm. We test the proposed method on synthetic and field data and we compare the results against those obtained by the classical method based on the Kurtosis maximization of the seismic data. The results show that the proposed technique is more accurate and reliable than the Kurtosis-based approach, especially when the effective data bandwidth is relatively poor and/or the non-Gaussianity hyphotesis is not fully satisfied.
- Beaton, A., and Turkey, J., 1974. The fitting of power series, meaning polynomials,
- illustrated on band-spectroscopic data. Technometrics, 16: 147-185.
- Beck, A., and Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for
- linear inverse problems. SIAM J. Imag. Sci., 2: 183-202.
- Bioucas-Dias, J.M. and Figueiredo, M.A.T., 2007, A new twist: Two-step iterative
- shrinkage/thresholding algorithms for image restoration: IEEE Transact. Image
- Process., 16: 2992-3004.
- Daubechies, I., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for
- linear inverse problems with a sparsity constraint. Commun. Pure Appl.
- Mathemat., 57: 14131457.
- Edgar, J., and van der Baan, M., 2011. How reliable is statistical wavelet estimation?
- Geophysics, 76: V59-V68.
- Farquharson, C.G. and Oldenburg, D.W., 2004. A comparison of automatic techniques
- for estimating the regularization parameter in non-linear inverse problems.
- Geophys. J. Internat., 156: 411-425.
- Figueiredo, M.A.T., Nowak, R.D. and Wright, S.J., 2007. Gradient projection for sparse
- reconstruction: Application to compressed sensing and other inverse problems.
- IEEE J. select. Top. Sign. Process., 1: 586-597.
- Gramfort, A., Strohmeier, D., Haueisen, J., Hmlinen, M. and Kowalski, M., 2013. Time-
- frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary
- source activations. Neurolmage, 70: 410-422.
- Hennenfent, G., van den Berg, E., Friedlander, M.P. and Hermann, F.J., 2008. New
- insights into one-norm solvers from the Pareto curve. Geophysics, 73: 23-26.
- Herron, D., 2011. First Steps in Seismic Interpretation. SEG, Tulsa, OK.
- Lazear, G., 1993. Mixed-phase wavelet estimation using fourth-order cumulants.
- Geophysics, 58: 1042-1051.
- Levy, S. and Oldenburg, D.W., 1987. Automatic phase correction of common-midpoints
- stacked data. Geophysics, 52: P51-P59.
- Longbottom, J., Walden, A.T. and White, R.E., 1988. Principles and application of
- maximum Kurtosis phase estimation. Geophys. Prosp., 36: 115-138.
- Lu, W., 2005. Non-minimum-phase wavelet estimation using second and third-order
- moments. Geophys. Prosp., 53: 149-158.
- Ma, M., Wang, S., Yuan, S., Wang, J., Wang, T., Haueisen, J., Hmlinen, M. and
- Kowalski, M., 2015. The comparison of skewness and Kurtosis criteria for
- wavelet phase estimation. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New
- Orleans: 5164-5168.
- Malinverno, A. and Briggs, V.A., 2004. Expanded uncertainty quantification in inverse
- problems: Hierarchical bayes and empirical bayes. Geophysics, 69: 1005-1016.
- Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade for
- Marmousi. The Leading Edge, 25: 156-166.
- Neidell, N., 1991. Could the processed seismic wavelet be simpler than we think?
- Geophysics, 56: P681-P690.
- Oldenburg, D.W., Scheuer, T. and Levy, S., 1983. Recovery of the acoustic impedance
- from reflection seismograms. Geophysics, 48: 1318-1337.
- Pérez, D.O., Velis, D.R. and Sacchi, M.D., 2013. High-resolution prestack seismic
- inversion using a hybrid FISTA least-squares strategy. Geophysics, 78: R185-
- R195.
- Pérez, D.O., Velis, D.R. and Sacchi, M.D., 2017. Three-term inversion of prestack
- seismic data using a weighted />; mixed norm. Geophys. Prosp., 65, 1477-1495.
- Robinson, E.A. and Treitel, S., 2002. Geophysical Signal Analysis. SEG, Tulsa, OK.
- Sacchi, M.D., 1997. Reweighting strategies in seismic deconvolution. Geophys. J.
- Internat., 129: 651-656.
- Taylor, H.L., Banks, S.C. and McCoy, J.F., 1979. Deconvolution with the /; norm:
- Geophysics, 44: 39-52.
- Tugnait, J., 1987. Identification of linear stochastic systems via second- and fourth-order
- cumulant matching. IEEE Trans. Info. Theory, IT-33: 393-407.
- van den Berg, E. and Friedlander, M., 2008. Probing the Pareto frontier for basis pursuit
- solutions. SIAM J. Sci. Comput., 31: 890-912.
- van der Bann, M., 2008. Time-varying wavelet estimation and deconvolution by Kurtosis
- maximization. Geophysics, 73: V11-V18.
- van der Bann, M. and Fomel, S., 2009. Nonstationary phase estimation using regularized
- local Kurtosis maximization. Geophysics, 73: A75-A80.
- Velis, D.R., 2003. Estimating the distribution of primary reflection coefficients.
- Geophysics, 68: 1417-1422.
- Velis, D.R., 2008. Stochastic sparse-spike deconvolution. Geophysics, 73, RI-R9.
- Velis, D.R. and Ulrych, T.J., 1996. Simulated annealing wavelet estimation via fourth-
- order cumulant matching. Geophysics, 61: 1939-1948.
- Walden, A. and Hosken, J., 1986. The nature of the non-Gaussianity of primary reflection
- coefficients and its significance for deconvolution. Geophys. Prosp., 34: 1038-
- Wang, Z., Zhang, B. and Gao, J., 2014. The residual phase estimation of a seismic
- wavelet using a Rényi divergence-based criterion. J. Appl. Geophys., 11: 96-105.
- White, R., 1988. Maximum Kurtosis phase correction. Geophys. J. Internat., 95: 371-389.
- Xu, Y., Thore, P. and Duchenne, S., 2012. The reliability of the Kurtosis-based wavelet
- estimation. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
- Yilmaz, O., 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of
- Seismic Data. Investigations in Geophysics, SEG, Tulsa, OK.
- Yuan, S.Y. and Wang, X., 2011. Influence of inaccurate wavelet phase estimation on
- seismic inversion. Appl. Geophys., 8: 48-59.