Converted wave reverse time migration with Gaussian beams in VTI media

Xiao, J.E., Li, Z.C., Zhang, K. and Liu, Q., 2019. Converted wave reverse time migration with Gaussian beams in VTI media. Journal of Seismic Exploration, 28: 205-220. With the development of seismic data acquisition technology, more and more multi-component seismic data are being acquired. Owing to the slow propagation velocity and wide propagation angle, the converted PS-wave contains more accurate subsurface information, which make it play an important role in multi-component seismic exploration. Compared with the P-wave, the converted PS-wave is more sensitive to the anisotropy, which cannot be neglected during the seismic migration. Reverse time migration with Gaussian beams combines the high calculation efficiency of Gaussian beam migration and the high imaging accuracy of reverse time migration, which can be used for the converted PS-wave imaging. In this paper, we derive the converted PS-wave ray tracing equations based on phase velocity and present the imaging condition of converted PS-wave, then we propose a converted wave reverse time migration with Gaussian beams method for VTI media. The numerical tests on anisotropic models demonstrate the effectiveness and applicability of the proposed method.
- Alfaraj, M. and Larner, K., 1992. Transformation to zero offset for mode-convertedwaves. Geophysics, 57: 474-477.
- Alkhalifah, T., 1995. Gaussian beam depth migration for anisotropic media. Geophysics,69: 1474-1484.
- Babi¢é, V.M. and Kirpi¢nikova, N.Y., 1980. The Boundary-Layer method in diffractionproblems. Optica Acta Internat. J. Optics, 27: 282-282.
- Baysal, E., Dan, D.K. and Sherwood, J.W.C., 1983. Reverse time migration. Geophysics,48: 1514-1524.
- Bi, L.F., Qin, N. and Yang, X.D., 2015. Gauss beam reverse time migration method for_ _ elastic multiple wave. Geophys. Prosp. Petrol. (in Chinese), 54: 64-70.
- Cerveny, V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media._ Geophys. J. Internat., 29: 1-13.
- Cerveny, V., Popov, M.M. and PSen¢éik, I., 1982. Computation of wave fields ininhomogeneous media - Gaussian beam approach. Geophys. J. Internat., 70:109-128.
- Dai, H. and Li, X.Y., 2006. The effects of migration velocity errors on traveltimeaccuracy in prestack Kirchhoff time migration and the image of PS converted waves.Geophysics, 71(2): S73-S83.
- Guitton, A., Kaelin, B. and Biondi, B., 2006. Least - square attenuation of reverse timemigration artifacts. Geophysics, 72(1): S19.
- Gray, S.H., 2005. Gaussian beam migration of common-shot records. Geophysics, 70(4):S7
- Gray, S.H. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration.Geophysics, 74(2): S11-S23.
- Han, J., Wang, Y., Xing, Z. and Lu, J., 2014. Gaussian beam prestack depth migration ofconverted wave in TI media. J. Appl. Geophys., 109: 7-14.
- Hanyga, A., 1986. Gaussian beams in anisotropic elastic media. Geophys. J. Internat., 85:473-504.
- Hill, N.R., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
- Hill, N.R., 2001. Prestack Gaussian-beam depth migration. Geophysics, 66: 1240-1250.
- Huang, J.P., Zhang, Q., Zhang, K., Li, Z.C., Yue, Y.B. and Yuan, M.L., 2014. Reversetime migration with Gaussian beams based on the Green function. Oil Geophys.Prosp., 49: 101-106.
- Li, X., Dai, H. and Mancini, F., 2007. Converted-wave imaging in anisotropic media:theory and case studies. Geophys. Prosp., 55: 345-363.
- Nowack, R.L., Sen, M.K. and Stoffa, P.L., 2003. Gaussian beam migration for sparsecommon-shot and common-receiver data. Expanded Abstr., 73rd Ann. Internat. SEGMtg., Dallas.
- Pao, Y.H. and Varatharajulu, V., 1976. Huygens’ principle, radiation conditions, andintegral formulas for the scattering of elastic waves. J. Acoust. Soc. Am., 59:1361-1371.
- Popov, M.M., Semtchenok, N.M., Popov, P.M. and Verdel, A.R., 2010. Depth migrationby the Gaussian beam summation method. Geophysics, 75(2): S81.
- Rooijen, H.P.G.M., 1991. Stacking of P-SV seismic reflection data using DIP moveout.Geophys. Prosp., 39: 585-598.
- Sun, W., Zhou, B. and Fu, L.Y., 2010. Dip angle-compensated one-way wave equationmigration. Explor. Geophys., 41: 137-145.
- Tessmer, G., Krajewski, P., Fertig, J. and Behle, 1990. Processing of PS-reflection dataprocessing of PS-reflection data applying a common conversion-point stackingtechnique. Geophys. Prosp., 38: 267-268.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Wang, W., Pham, L.D. and Lou, M., 2002. Converted-wave prestack time migration forisotropic and anisotropic media. Expanded Abstr., 72nd Ann. Internat. SEG Mtg.,Salt Lake City.
- Yu, Z., Xu, S., Zhang, G. and Bleistein, N., 2007. True amplitude turning-wave one-waywave equation migration. Geophys. Prosp. Petrol., 46: 582-581.
- Yue, Y.B., 2011. Study on Gaussian beam migration methods in a complex medium.
- Qingdao: China University of Petroleum (East China).
- Zai-Tian, M.A., 1995. Two-dimensional elastic wave migration of common offset seismicsection. Chin. J. Geophys.: S1.
- Zhang, K., Duan, X.Y., Li, Z.C., Huang, J.P. and Zhang, Q, 2015. Angel domain reversetime migration with Gaussian beams in anisotropic media. Oil Geophys. Prosp., 50:912-918.
- Zhu, T., Gray, S.H. and Wang, D., 2005. Kinematic and dynamic raytracing inanisotropic media: theory and application. Expanded Abstr., 75th Ann. Internat. SEGMtg., Houston.
- Zhu, T., Gray, S.H. and Wang, D., 2007. Prestack Gaussian-beam depth migration inanisotropic media. Geophysics, 72(3): 3-S138.