ARTICLE

Converted wave reverse time migration with Gaussian beams in VTI media

JIAN-EN XIAO1 ZHEN-CHUN LI1,2 KAI ZHANG1,2 QIANG LIU1
Show Less
1 School of Geosciences, China University of Petroleum (East China), Qingdao 266580, P.R. China.,
2 Evaluation and Detection Technology Laboratory of marine mineral resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P.R. China.,
JSE 2019, 28(3), 205–220;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Xiao, J.E., Li, Z.C., Zhang, K. and Liu, Q., 2019. Converted wave reverse time migration with Gaussian beams in VTI media. Journal of Seismic Exploration, 28: 205-220. With the development of seismic data acquisition technology, more and more multi-component seismic data are being acquired. Owing to the slow propagation velocity and wide propagation angle, the converted PS-wave contains more accurate subsurface information, which make it play an important role in multi-component seismic exploration. Compared with the P-wave, the converted PS-wave is more sensitive to the anisotropy, which cannot be neglected during the seismic migration. Reverse time migration with Gaussian beams combines the high calculation efficiency of Gaussian beam migration and the high imaging accuracy of reverse time migration, which can be used for the converted PS-wave imaging. In this paper, we derive the converted PS-wave ray tracing equations based on phase velocity and present the imaging condition of converted PS-wave, then we propose a converted wave reverse time migration with Gaussian beams method for VTI media. The numerical tests on anisotropic models demonstrate the effectiveness and applicability of the proposed method.

Keywords
converted wave
reverse time migration
Gaussian beams
VTI media
References
  1. Alfaraj, M. and Larner, K., 1992. Transformation to zero offset for mode-converted
  2. waves. Geophysics, 57: 474-477.
  3. Alkhalifah, T., 1995. Gaussian beam depth migration for anisotropic media. Geophysics,
  4. 69: 1474-1484.
  5. Babi¢é, V.M. and Kirpi¢nikova, N.Y., 1980. The Boundary-Layer method in diffraction
  6. problems. Optica Acta Internat. J. Optics, 27: 282-282.
  7. Baysal, E., Dan, D.K. and Sherwood, J.W.C., 1983. Reverse time migration. Geophysics,
  8. 48: 1514-1524.
  9. Bi, L.F., Qin, N. and Yang, X.D., 2015. Gauss beam reverse time migration method for
  10. _ _ elastic multiple wave. Geophys. Prosp. Petrol. (in Chinese), 54: 64-70.
  11. Cerveny, V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media.
  12. _ Geophys. J. Internat., 29: 1-13.
  13. Cerveny, V., Popov, M.M. and PSen¢éik, I., 1982. Computation of wave fields in
  14. inhomogeneous media - Gaussian beam approach. Geophys. J. Internat., 70:
  15. 109-128.
  16. Dai, H. and Li, X.Y., 2006. The effects of migration velocity errors on traveltime
  17. accuracy in prestack Kirchhoff time migration and the image of PS converted waves.
  18. Geophysics, 71(2): S73-S83.
  19. Guitton, A., Kaelin, B. and Biondi, B., 2006. Least - square attenuation of reverse time
  20. migration artifacts. Geophysics, 72(1): S19.
  21. Gray, S.H., 2005. Gaussian beam migration of common-shot records. Geophysics, 70(4):
  22. S7
  23. Gray, S.H. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration.
  24. Geophysics, 74(2): S11-S23.
  25. Han, J., Wang, Y., Xing, Z. and Lu, J., 2014. Gaussian beam prestack depth migration of
  26. converted wave in TI media. J. Appl. Geophys., 109: 7-14.
  27. Hanyga, A., 1986. Gaussian beams in anisotropic elastic media. Geophys. J. Internat., 85:
  28. 473-504.
  29. Hill, N.R., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
  30. Hill, N.R., 2001. Prestack Gaussian-beam depth migration. Geophysics, 66: 1240-1250.
  31. Huang, J.P., Zhang, Q., Zhang, K., Li, Z.C., Yue, Y.B. and Yuan, M.L., 2014. Reverse
  32. time migration with Gaussian beams based on the Green function. Oil Geophys.
  33. Prosp., 49: 101-106.
  34. Li, X., Dai, H. and Mancini, F., 2007. Converted-wave imaging in anisotropic media:
  35. theory and case studies. Geophys. Prosp., 55: 345-363.
  36. Nowack, R.L., Sen, M.K. and Stoffa, P.L., 2003. Gaussian beam migration for sparse
  37. common-shot and common-receiver data. Expanded Abstr., 73rd Ann. Internat. SEG
  38. Mtg., Dallas.
  39. Pao, Y.H. and Varatharajulu, V., 1976. Huygens’ principle, radiation conditions, and
  40. integral formulas for the scattering of elastic waves. J. Acoust. Soc. Am., 59:
  41. 1361-1371.
  42. Popov, M.M., Semtchenok, N.M., Popov, P.M. and Verdel, A.R., 2010. Depth migration
  43. by the Gaussian beam summation method. Geophysics, 75(2): S81.
  44. Rooijen, H.P.G.M., 1991. Stacking of P-SV seismic reflection data using DIP moveout.
  45. Geophys. Prosp., 39: 585-598.
  46. Sun, W., Zhou, B. and Fu, L.Y., 2010. Dip angle-compensated one-way wave equation
  47. migration. Explor. Geophys., 41: 137-145.
  48. Tessmer, G., Krajewski, P., Fertig, J. and Behle, 1990. Processing of PS-reflection data
  49. processing of PS-reflection data applying a common conversion-point stacking
  50. technique. Geophys. Prosp., 38: 267-268.
  51. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  52. Wang, W., Pham, L.D. and Lou, M., 2002. Converted-wave prestack time migration for
  53. isotropic and anisotropic media. Expanded Abstr., 72nd Ann. Internat. SEG Mtg.,
  54. Salt Lake City.
  55. Yu, Z., Xu, S., Zhang, G. and Bleistein, N., 2007. True amplitude turning-wave one-way
  56. wave equation migration. Geophys. Prosp. Petrol., 46: 582-581.
  57. Yue, Y.B., 2011. Study on Gaussian beam migration methods in a complex medium.
  58. Qingdao: China University of Petroleum (East China).
  59. Zai-Tian, M.A., 1995. Two-dimensional elastic wave migration of common offset seismic
  60. section. Chin. J. Geophys.: S1.
  61. Zhang, K., Duan, X.Y., Li, Z.C., Huang, J.P. and Zhang, Q, 2015. Angel domain reverse
  62. time migration with Gaussian beams in anisotropic media. Oil Geophys. Prosp., 50:
  63. 912-918.
  64. Zhu, T., Gray, S.H. and Wang, D., 2005. Kinematic and dynamic raytracing in
  65. anisotropic media: theory and application. Expanded Abstr., 75th Ann. Internat. SEG
  66. Mtg., Houston.
  67. Zhu, T., Gray, S.H. and Wang, D., 2007. Prestack Gaussian-beam depth migration in
  68. anisotropic media. Geophysics, 72(3): $133-S138.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing