Converted wave reverse time migration with Gaussian beams in VTI media

Xiao, J.E., Li, Z.C., Zhang, K. and Liu, Q., 2019. Converted wave reverse time migration with Gaussian beams in VTI media. Journal of Seismic Exploration, 28: 205-220. With the development of seismic data acquisition technology, more and more multi-component seismic data are being acquired. Owing to the slow propagation velocity and wide propagation angle, the converted PS-wave contains more accurate subsurface information, which make it play an important role in multi-component seismic exploration. Compared with the P-wave, the converted PS-wave is more sensitive to the anisotropy, which cannot be neglected during the seismic migration. Reverse time migration with Gaussian beams combines the high calculation efficiency of Gaussian beam migration and the high imaging accuracy of reverse time migration, which can be used for the converted PS-wave imaging. In this paper, we derive the converted PS-wave ray tracing equations based on phase velocity and present the imaging condition of converted PS-wave, then we propose a converted wave reverse time migration with Gaussian beams method for VTI media. The numerical tests on anisotropic models demonstrate the effectiveness and applicability of the proposed method.
- Alfaraj, M. and Larner, K., 1992. Transformation to zero offset for mode-converted
- waves. Geophysics, 57: 474-477.
- Alkhalifah, T., 1995. Gaussian beam depth migration for anisotropic media. Geophysics,
- 69: 1474-1484.
- Babi¢é, V.M. and Kirpi¢nikova, N.Y., 1980. The Boundary-Layer method in diffraction
- problems. Optica Acta Internat. J. Optics, 27: 282-282.
- Baysal, E., Dan, D.K. and Sherwood, J.W.C., 1983. Reverse time migration. Geophysics,
- 48: 1514-1524.
- Bi, L.F., Qin, N. and Yang, X.D., 2015. Gauss beam reverse time migration method for
- _ _ elastic multiple wave. Geophys. Prosp. Petrol. (in Chinese), 54: 64-70.
- Cerveny, V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media.
- _ Geophys. J. Internat., 29: 1-13.
- Cerveny, V., Popov, M.M. and PSen¢éik, I., 1982. Computation of wave fields in
- inhomogeneous media - Gaussian beam approach. Geophys. J. Internat., 70:
- 109-128.
- Dai, H. and Li, X.Y., 2006. The effects of migration velocity errors on traveltime
- accuracy in prestack Kirchhoff time migration and the image of PS converted waves.
- Geophysics, 71(2): S73-S83.
- Guitton, A., Kaelin, B. and Biondi, B., 2006. Least - square attenuation of reverse time
- migration artifacts. Geophysics, 72(1): S19.
- Gray, S.H., 2005. Gaussian beam migration of common-shot records. Geophysics, 70(4):
- S7
- Gray, S.H. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration.
- Geophysics, 74(2): S11-S23.
- Han, J., Wang, Y., Xing, Z. and Lu, J., 2014. Gaussian beam prestack depth migration of
- converted wave in TI media. J. Appl. Geophys., 109: 7-14.
- Hanyga, A., 1986. Gaussian beams in anisotropic elastic media. Geophys. J. Internat., 85:
- 473-504.
- Hill, N.R., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
- Hill, N.R., 2001. Prestack Gaussian-beam depth migration. Geophysics, 66: 1240-1250.
- Huang, J.P., Zhang, Q., Zhang, K., Li, Z.C., Yue, Y.B. and Yuan, M.L., 2014. Reverse
- time migration with Gaussian beams based on the Green function. Oil Geophys.
- Prosp., 49: 101-106.
- Li, X., Dai, H. and Mancini, F., 2007. Converted-wave imaging in anisotropic media:
- theory and case studies. Geophys. Prosp., 55: 345-363.
- Nowack, R.L., Sen, M.K. and Stoffa, P.L., 2003. Gaussian beam migration for sparse
- common-shot and common-receiver data. Expanded Abstr., 73rd Ann. Internat. SEG
- Mtg., Dallas.
- Pao, Y.H. and Varatharajulu, V., 1976. Huygens’ principle, radiation conditions, and
- integral formulas for the scattering of elastic waves. J. Acoust. Soc. Am., 59:
- 1361-1371.
- Popov, M.M., Semtchenok, N.M., Popov, P.M. and Verdel, A.R., 2010. Depth migration
- by the Gaussian beam summation method. Geophysics, 75(2): S81.
- Rooijen, H.P.G.M., 1991. Stacking of P-SV seismic reflection data using DIP moveout.
- Geophys. Prosp., 39: 585-598.
- Sun, W., Zhou, B. and Fu, L.Y., 2010. Dip angle-compensated one-way wave equation
- migration. Explor. Geophys., 41: 137-145.
- Tessmer, G., Krajewski, P., Fertig, J. and Behle, 1990. Processing of PS-reflection data
- processing of PS-reflection data applying a common conversion-point stacking
- technique. Geophys. Prosp., 38: 267-268.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Wang, W., Pham, L.D. and Lou, M., 2002. Converted-wave prestack time migration for
- isotropic and anisotropic media. Expanded Abstr., 72nd Ann. Internat. SEG Mtg.,
- Salt Lake City.
- Yu, Z., Xu, S., Zhang, G. and Bleistein, N., 2007. True amplitude turning-wave one-way
- wave equation migration. Geophys. Prosp. Petrol., 46: 582-581.
- Yue, Y.B., 2011. Study on Gaussian beam migration methods in a complex medium.
- Qingdao: China University of Petroleum (East China).
- Zai-Tian, M.A., 1995. Two-dimensional elastic wave migration of common offset seismic
- section. Chin. J. Geophys.: S1.
- Zhang, K., Duan, X.Y., Li, Z.C., Huang, J.P. and Zhang, Q, 2015. Angel domain reverse
- time migration with Gaussian beams in anisotropic media. Oil Geophys. Prosp., 50:
- 912-918.
- Zhu, T., Gray, S.H. and Wang, D., 2005. Kinematic and dynamic raytracing in
- anisotropic media: theory and application. Expanded Abstr., 75th Ann. Internat. SEG
- Mtg., Houston.
- Zhu, T., Gray, S.H. and Wang, D., 2007. Prestack Gaussian-beam depth migration in
- anisotropic media. Geophysics, 72(3): $133-S138.