ARTICLE

3D isotropic elastic reverse time migration using signed magnitudes of elastic data components

WENLONG WANG1 GEORGE A. MCMECHAN2
Show Less
1 Department of Mathematics, Harbin Institute of Technology, 92 Xidazhi St., Nangang Dist., Harbin, Heilongjiang 150001, P.R. China.,
2 Center for Lithospheric Studies, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, U.S.A.,
JSE 2019, 28(3), 221–244;
Submitted: 29 July 2018 | Accepted: 15 April 2019 | Published: 1 June 2019
© 2019 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, W. and McMechan, G.A., 2019. 3D isotropic elastic reverse time migration using signed magnitudes of elastic data components. Journal of Seismic Exploration, 28: 221-244. Elastic reverse time migration (ERTM) is capable of characterizing subsurface properties more completely than its acoustic counterpart. P- and S-waves coexist in elastic wavefields, and their separation is required before, or as part of, applying the image conditions. Traditional P- and S-wave separation methods based on divergence and curl operators don't preserve the elastic vector information, and the associated polarity reversals of S-wave images are difficult to handle. Thus a preferable workflow for isotropic ERTM should include a vector decomposition of the elastic wavefields and a vector-based image condition that directly uses the signed magnitudes of the decomposed vector wavefields to produce PP and PS images. We propose a new 3D elastic image condition which is a source-normalized crosscorrelation of the signed magnitudes of the decomposed wavefields. The image condition is robust and stable for generating 3D PP and PS images and their corresponding angle domain common-image gathers (ADCIGs) with incident angles calculated from Poynting vectors. Comparisons between the proposed image condition and a vector-based dot-product image condition and show that the proposed image condition generates PP ADCIGs with a wider range of incident angles than existing dot-product image conditions.

Keywords
3D
RTM
elastic
image condition
References
  1. Aki, K. and Richards, P.G., 1980. Quantitative Seismology, Theory and Methods. W.H.Freeman and Co., Sausalito.
  2. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F. and Wyatt, K., 1994. SEG/EAGE_ 3-D modeling project: 2nd update. The Leading Edge, 13: 949-952.
  3. Cerveny, V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge.
  4. Chang, W. and McMechan, G.A., 1986. Reverse-time migration of offset verticalseismic profiling data using the excitation-time imaging condition. Geophysics, 51:67-84.
  5. Chang, W. and McMechan, G.A., 1994. 3-D elastic prestack reverse-time depthmigration. Geophysics, 59: 597-609.
  6. Cheng, J. and Fomel, S., 2014. Fast algorithms for elastic-wave-mode separation andvector decomposition using low-rank approximation for anisotropic media.Geophysics, 79(4): C97-C110.
  7. Claerbout, J., 1985. Imaging the Earth's Interior. Blackwell Scientific Publications Inc.,New York.
  8. Dai, F.T. and Kuo, J.T., 1986. Real data results of Kirchhoff elastic wave migration.Geophysics, 51: 1006-1011.
  9. Deng, F. and McMechan, G.A., 2007. True-amplitude prestack depth migration.Geophysics, 72(3): 5-S166.
  10. Deng, F. and McMechan, G.A., 2008. Viscoelastic true-amplitude prestack reverse-timedepth migration. Geophysics, 73(4): 3-S155.
  11. Du, Q., Going, X., Zhu, Y., and Fang, G., 2012. 3D PS-wave imaging with elasticreverse time migration. Geophysics, 79(5): 3-S184.
  12. Du, Q., Gong, X., Zhang, M., Zhu, Y. and Fang, G., 2014. 3D PS-wave imaging withelastic reverse-time migration. Geophysics, 79(5): 3-S184.
  13. Du, Q., Guo, C., Zhao, Q., Gong, X., Wang, C. and Li, X., 2017. Vector-based elasticreverse time migration based on scalar imaging condition. Geophysics, 82(2):1-S127.
  14. Gray, S.H., Etgen, J., Dellinger, J. and Whitmore, D., 2001. Seismic migration problemsand solutions. Geophysics, 66: 1622-1640.
  15. Hokstad, K., 2000. Multicomponent Kirchhoff migration. Geophysics, 65: 861-873.
  16. Jin, H. and McMechan, G.A. and Guan, H., 2014. Comparison of methods forextracting ADCIGs from RTM. Geophysics, 79(3): -S103.
  17. Jin, H., McMechan, G.A. and Nguyen, B.D., 2015. Improving I/O performance in 2Dand 3D ADCIGs from RTM. Geophysics, 80(2): S65-S77.
  18. Kaelin, B. and Guitton, A., 2006. Imaging condition for reverse time migration.
  19. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 2594-2598.
  20. Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched layerimproved at grazing incidence for the seismic wave equation. Geophysics, 72(5):SM155-SM167.
  21. Kuo, J.T. and Dai, F.T., 1984. Kirchhoff elastic wave migration for the case ofnoncoincident source and receiver. Geophysics, 49: 1223-1238.
  22. Ma, D. and Zhu, G., 2003. P- and S-wave separated elastic wave equation numericalmodeling (in Chinese). Oil Geophys. Prosp., 38(5): 482-486.
  23. Madariaga, R., 1976. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am.,66: 639-666.
  24. Nguyen, B.D. and McMechan, G.A., 2013. Excitation amplitude imaging condition forprestack reverse-time migration. Geophysics, 78(1): S37-S46.
  25. Nguyen, B.D. and McMechan, G.A., 2015. Five ways to avoid storing source wavefieldsnapshots in 2D elastic prestack reverse-time migration. Geophysics, 80(1):S1-S18.
  26. Rocha, D., Tanushev, N. and Sava, P., 2016. Isotropic elastic wavefield imaging usingthe energy norm. Geophysics, 81(4): S207-S219.
  27. Shabelansky, A.H., Malcolm, A. and Fehler, M., 2017. Converted-wave seismic imaging:
  28. Amplitude-balancing source-independent imaging conditions. Geophysics, 82(2):S99-S109.
  29. Sheriff, R.E. and Geldart, L.P., 1995. Exploration Seismology, 2nd Ed. CambridgeUniversity Press, Cambridge.
  30. Stewart, R.R., 2001. Joint P and P-SV inversion. Technical Report. CREWESResearch Report.
  31. Sun, R. and McMechan, G.A., 2001. Scalar reverse-time depth migration of prestackelastic seismic data. Geophysics, 66(5): 1518-1527.
  32. Virieux, J., 1984. SH-wave propagation in heterogeneous media: Velocity-stressfinite-difference method. Geophysics, 49: 1933-1957.
  33. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stressfinite-difference method. Geophysics, 51: 889-901.
  34. Wang, C., Cheng, J. and Arntsen, B., 2016. Scalar and vector imaging based on wavemode decoupling for elastic reverse time migration in isotropic and transverselyisotropic media. Geophysics, 81(5): 3-S398.
  35. Wang, W., Hua, B., McMechan, G.A. and Duquet, B., 2018. P and S decomposition inanisotropic media with localized low-rank approximations. Geophysics, 83(1):C13-C26.
  36. Wang, W. and McMechan, G.A., 2015. Vector-based elastic reverse-time migration.Geophysics, 80(6): S245-S258.
  37. Wang, W. and McMechan, G.A., 2016. Vector-based image condition for 3D elasticreverse time migrations. Expanded Abstr., 86th Ann. Internat. SEG Mtg., Dallas:4168-4172.
  38. Wang, W., McMechan, G.A., Tang, C. and Xie, F., 2016. Up/down and
  39. P/S-decompositions of elastic wavefields using complex seismic traces withapplications to calculating Poynting vectors and angle-domain common-imagegathers from reverse time migrations. Geophysics, 81(4), S1-S194.
  40. Wang, W., McMechan, G.A. and Zhang, Q., 2015. Comparison of two algorithms forisotropic elastic P and S vector decomposition. Geophysics, 80(4): T147-T160.
  41. Wapenaar, C.P.A. and Haimé, G.C., 1990. Elastic extrapolation of primary seismic P-and S-waves. Geophys. Prosp., 38: 23-60.
  42. Whitmore, N.D., 1995. An imaging hierarchy for common-angle seismograms. Ph.D.Thesis, University of Tulsa, Tulsa.
  43. Xiao, X. and Leaney, W.S., 2010. Local vertical seismic profiling (VSP) elasticreverse-time migration and migration resolution: Salt-flank imaging with transmittedP-to-S waves. Geophysics, 75(2): -S49.
  44. Yan, J. and Sava, P., 2008. Isotropic angle-domain elastic reverse-time migration.Geophysics, 73(6): 9-S239.
  45. Zhang, J., Tian, Z. and Wang, C., 2007. P- and S-wave separated elastic wave equationnumerical modeling using 2D staggered-grid. Expanded Abstr., 77th Ann. Internat.SEG Mtg., San Antonio: 2104-2109.
  46. Zhang, Q. and McMechan, G.A., 2011. Direct vector-field method to obtainangle-domain common-image gathers from isotropic acoustic and elastic reversetime migration. Geophysics, 76(5): WB135-WB149.
  47. Zhu, H., 2017. Elastic wavefield separation based on the Helmholtz decomposition.Geophysics, 82(2): 3-S183.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing