ARTICLE

Time-domain acoustic full-waveform inversion based on dual-sensor seismic acquisition system

YU ZHONG1 YANGTING LIU2,3
Show Less
1 School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, P.R. China.,
2 First institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, P.R. China.,
3 Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, P.R. China.,
JSE 2019, 28(2), 103–120;
Submitted: 25 April 2018 | Accepted: 20 January 2019 | Published: 1 April 2019
© 2019 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhong, Y. and Liu, Y.T., 2019. Time-domain acoustic full-waveform inversion based on dual-sensor seismic acquisition system. Journal of Seismic Exploration, 28: 103-120. In many previous studies, attentions were paid to using dual-sensor seismic acquisition system for suppressing ghost waves, extending seismic bandwidth and improving resolution of migration, while few attentions were paid to full-waveform inversion (FWI) based on dual-sensor’s seismic data. In this paper, we propose an acoustic FWI method based on dual-sensor acquisition system. We first review conventional acoustic FWI and compare it with our new dual-sensor acoustic FWI. Then we give the boundary condition for our dual-sensor acoustic FWI. Secondly, we derive new gradient equations with the spatial derivative of particle velocities replaced by the time derivative of pressure. Further, time-domain multi-scale strategy is conducted to reduce the nonlinearity of acoustic FWI. At last, the synthetic examples of modified Marmousi model are presented to demonstrate the efficiency and advantages of our dual-sensor acoustic FWI over conventional acoustic FWI. It can be found that, compared with conventional acoustic FWI, dual-sensor acoustic FWI almost does not cause extra computation and memory costs but can improve the accuracy of acoustic FWI.

Keywords
dual-sensor seismic acquisition system
dual-sensor FWI
boundary conditions
References
  1. Baumstein, A., Anderson, J.E., Hinkley, D.L. and Krebs, J.R., 2009. Scaling of theobjective function gradient for full wavefield inversioin. Expanded Abstr., 79th Ann.Internat. SEG Mtg., Houston: 2243-2247.
  2. Boonyasiriwat C., Valasek, P., Routh, P., Cao, W.P., Schuster, G.T. and Macy, B., 2009.
  3. An efficient multiscale method for time-domain waveform tomography. Geophysics,74(6): WCC59-WCC68.
  4. Brossier, R., Operto, S. and Virieux, J., 2009a.Two-dimensional seismic imaging of the
  5. Valhall model from synthetic OBC data by frequency-domain elastic full-waveforminversion. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 2293-2297.
  6. Brossier, R., Operto, S. and Virieux, J., 2009b. Seismic imaging of complex onshorestructures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6):WCC105-WCC118.
  7. Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveforminversion. Geophysics, 60: 1457-1473.
  8. Bunting, T., Lim, B.J., Lim, C.H., Kragh, E., Gao, R.T., Yang, S.K., Zhang, Z.B., Xie,
  9. Y.H. and Li, L., 2011. Marine broadband case study offshore China. First Break, 29(9),67-74.
  10. Crase, E., Pica, A. and Noble, M., 1990. Robust elastic nonlinear waveform inversion:
  11. Application to real data. Geophysics, 55: 527-538.
  12. Forgues, E. and Lambaré, G., 1997. Parameterization study for acoustic and elastic rayand Born inversion. J. Seismic Explor., 6: 253-278.
  13. Hill, D., Combee, C. and Bacon, J., 2006. Over/under acquisition and data processing:
  14. The next quantum leap in seismic technology? First Break, 24(6): 81-96.
  15. Kohn, D., Nil, D.D., Kurzmann, A., Przebindowska, A. and Bohlen, T., 2012. On theinfluence of model parametrization in elastic full waveform tomography. Geophys. J.Internat., 191: 325-345.
  16. Lailly, P., 1983. The seismic inverse problem as a sequence of before-stack migrations.
  17. Conference on Inverse Scattering: Theory and Application. SIAM: 206-220.
  18. Liu Q.Y. and Tromp, J., 2006. Finite-frequency kernels base on adjoint methods. Bull.Seismol. Soc. Am., 96: 2383-2397.
  19. Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.Geophysics, 52: 1211-1228.
  20. Moldoveanu, N., Combee, L., Egan, M., Hampson, G., Sydora, L. and Abriel, W., 2007.
  21. Over/under towed-streamer acquisition: a method to extend seismic bandwidth to bothhigher and lower frequencies. The Leading Edge, 26: 41-58.
  22. Nocedal, J. and Wright, S., 2006. Numerical Optimization, 2nd ed. Springer Verlag,
  23. Operations Research and Financial Engineering, New York.
  24. Operto, S., Gholami, Y., Prieux, V., Ribodetti, A., Brossier, R., Metivier, L. and Virieux,
  25. J., 2013. A guided tour of multiparameter full waveform inversion withmulticomponent data: from theory to practice. The Leading Edge, 32: 1040-1054.
  26. Ozdemir, K., Caprioli, P., Ozbek, A., Kragh, E. and Robertsson, J., 2008. Optimizeddeghosting of over/under towed streamer data in the presence of noise. The LeadingEdge, 27: 190-199.
  27. Plessix, R.E. and Cao, Q., 2011. A parametrization study for surface seismic fullwaveform inversion in an acoustic vertical transversely isotropic medium. Geophys. J.Internat., 185: 539-556.
  28. Pratt, R.G., Shin, C. and Hicks, G.J., 1998. Gauss-Newton and full Newton methods infrequency-space seismic waveform inversion. Geophys. J. Internat., 133: 341-362
  29. Ravasi, M., Vasconcelos, I., Curtis, A. and Kritski, A., 2015a. Vector-acoustic reversetime migration of Volve ocean-bottom cable data set without up/down decomposedwavefields. Geophysics, 80(4): 7-S150.
  30. Ravasi, M., Vasconcelos, I., Curtis, A. and Kritski, A., 2015b. A practical approach tovector-acoustic imaging of primaries and free-surface multiples. Workshop, 77thEAGE Conf., Madrid.
  31. Ren, Z. and Liu, Y., 2016. A hierarchical elastic full-waveform inversion scheme basedon wavefield separation and the multistep-length approach. Geophysics, 81(3), 99-123.
  32. Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategyfor selecting temporal frequencies. Geophysics, 69: 231-248.
  33. Sears, T.J., Singh, S.C. and Barton, P.J., 2008. Elastic full waveform inversion ofmulti-component OBC seismic data. Geophys. Prosp., 56: 843-862,
  34. Sirgue, L., Etgen, J. and Albertin, U., 2008. 3D frequency-domain waveform inversionusing time-domain finite-difference methods. Extended Abstr., 70th EAGE Conf.,Rome: F022.
  35. Symes, W.M., 2007. Reverse-time migration with optimal checkpointing. Geophysics,72(5): SM213-SM221.
  36. Shipp, R.M. and Singh, S.C., 2002. Two-dimensional full wavefield inversion ofwide-aperture marine seismic streamer data. Geophys. J. Internat., 151: 325-344.
  37. Sandberg, K. and Beylkin, G., 2009. Full wave equation depth extrapolation formigration. Geophysics, 74: WCA121-WCA128.
  38. Sonneland, L., Berg, L., Eidsvig, P., Haugen, A., Fotland, B. and Vestby, I., 1986. 2Ddeghosting using vertical receiver arrays. Expanded Abstr., 56th Ann. Internat. SEGMtg., Houston: 516-519.
  39. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation.Geophysics, 49: 1259-1266.
  40. Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.Geophysics, 51: 1893-1903.
  41. Vasconcelos, I., 2013. Source-receiver, reverse-time imaging of dual-source,vector-acoustic seismic data. Geophysics, 78(2): WA123-WA145.
  42. Virieux, J., 1984. SH-wave propagation in heterogenerous media: Velocity-stressfinite-difference method. Geophysics, 49: 1933-1957.
  43. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in explorationgeophysics. Geophysics, 74(6): WCC1-WCC26.
  44. Wu, R. and Aki, K., 1985. Scattering characteristics of elastic waves by an elasticheterogeneity. Geophysics, 50: 582-595.
  45. Wang, T.F. and Cheng, J.B., 2017. Elastic full waveform inversion based on modedecomposition: the approach and mechanism. Geophys. J. Internat., 209: 606-622.
  46. Wang, B.L., Gao, J.H., Chen, W.C. and Zhang, H.L., 2012. Efficient boundary storagestrategies for seismic reverse time migration. Chin. J. Geophys. (in Chinese), 55:2412-2421
  47. Wang, J., Zhou, H., Tian, Y.K. and Zhang, H.J., 2012. A new scheme for elastic fullwaveform inversion based on velocity-stress wave equations in time domain.
  48. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  49. You, J Ch., G.C. Li, X.W. Liu, W.G. Han, G.D. Zhang, 2016. Full-wave-equation depthextrapolation for true amplitude migration based on a dual-sensor seismic acquisitionsystem: Geophysical Journal International, 204(3), 1462-1476.
  50. You, J.Ch., Liu, X.W. and Wu, R.S., 2017. First-order acoustic wave equation reversetime migration based on the dual-sensor seismic acquisition system. Pure Appl.Geophys., 174: 1345-1360.
  51. Zhou, H., Takenaka, J.E. and Tanaka, T., 2008. A breast imaging model usingmicrowaves and time domain three dimensional reconstruction method. Progr.Electromagnet. Res., 93: 57-70.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing