ARTICLE

3D true-amplitude anisotropic elastic Gaussian beam depth migration of 3D irregular data

M.I. PROTASOV1 V.A. TCHEVERDA1 A.P. PRAVDUHIN2
Show Less
1 Institute of Petroleum Geology and Geophysics,3 Koptyug Street, Novosibirsk 630090, Russia.,
2 INGEOSERVICE, Respubliki Street, Bldg. 211, Tyumen 625019, Russia.,
JSE 2019, 28(2), 121–146;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Protasov, M.I., Tcheverda, V.A. and Pravduhin, A.P., 2019. 3D true-amplitude anisotropic elastic Gaussian beam depth migration of 3D irregular data. Journal of Seismic Exploration, 28: 121-146. True amplitude seismic migration is the procedure, which provides not only the localization of geological objects but also the restoration of their so-called 'reflectivity'. This characteristic gives very important quantitative additional information about elastic parameters of the objects of interest. The paper addresses 3D seismic depth true- amplitude migration of 3D irregular data in anisotropic media based on beam decomposition of the data. The main objective is the development of the imaging procedure suitable for anisotropic media and handling 3D irregular seismic data without any preliminary regularization. The key components providing the desired image are elastic anisotropic Gaussian beams. Depending on the choice of the beam (quasi P or quasi S) we have PP- or PS-images. Results of synthetic and real data processing are presented and discussed.

Keywords
3D imaging
Gaussian beams
anisotropy
irregular multicomponent data
References
  1. Albertin, U., Yingst, D., Kitchenside P. and Tcheverda, V., 2004. True-amplitude beam
  2. migration. Expanded Abstr, 74th Ann. Internat. SEG Mtg., Denver: 398-401.
  3. Babich, V.M. and Popov, M.M., 1989. Gaussian beam summation (review). Izvestiya
  4. Vysshikh Uchebnykh Zavedenii Radiofizika, 32: 1447-1466 (in Russian,
  5. translated in Radiophysics and Quantum Electronics, 32: 1063-1081).
  6. Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering problem by
  7. inversion of causal generalized Radon transform. J. Mathemat. Phys., 26: 99-
  8. Devaney, A.J., 1984. Geophysical diffraction tomography. IEEE Transact. Geosci. Rem.
  9. Sens., 22: 3-13.
  10. Docherty, P., 1991. A brief comparison of some Kirchhoff integral formulas for
  11. migration. Geophysics, 56:1164-1169.
  12. Gray, S.H., 2005. Gaussian beam migration of common-shot records. Geophysics,
  13. 70(4): S71-S77.
  14. Gray, S. and Bleistein, N., 2009. True amplitude Gaussian-beam migration. Geophysics,
  15. 74: S11-S23.
  16. Hill, N.R., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
  17. Hill, N.R., 2001. Prestack Gaussian beam depth migration. Geophysics, 66: 1240-1250.
  18. Miller, D., Oristaglio, M. and Beylkin, G., 1987. A new slant on seismic imaging:
  19. Migration and integral geometry. Geophysics, 53: 943-964.
  20. Nomofilov, V.E., 1981. Asymptotic solution of a system of equations of second order,
  21. which are concentrated in a neighborhood of a ray. Zap. Nauch. Sem. LOMI,
  22. 104: 170-179 (in Russian).
  23. Novak, R.L., 2012. A tale of two beams: an elementary overview of Gaussian beams
  24. and Bessel beams. Stud. Geophys. Geod., 56: 355.
  25. Popov, M.M., 2002. Ray Theory and Gaussian Beam for Geophysicists. Editoria da
  26. Universidade Federal da Bahia, Salvador-Bahia, 172 pp.
  27. Protasov, M.I., 2015. 2D Gaussian beam imaging of multicomponent seismic data in
  28. anisotropic media. Geophys. J. Internat., 203: 2021-2031.
  29. Protasov, M.I., Reshetova, G.V. and Tcheverda, V.A., 2016. Fracture detection by
  30. Gaussian beam imaging of seismic data and image spectrum analysis. Geophys.
  31. Prosp., 64: 68-82.
  32. Protasov, M.I. and Tcheverda, V.A., 2011. True amplitude imaging by inverse
  33. generalized Radon transform based on Gaussian beam decomposition of the
  34. acoustic Green’s function. Geophys. Prosp., 59: 197-209.
  35. Protasov, M.I. and Tcheverda V.A., 2012. True amplitude elastic Gaussian beam
  36. imaging of multicomponent walkaway vertical seismic profiling data. Geophys.
  37. Prosp., 60: 1030-1042.
  38. Schleicher, J., Tygel, M. and Hubral, P., 1993. 3-D true amplitude finite-offset
  39. migration. Geophysics, 58: 1112-1126.
  40. Schleicher, J., Tygel, M. and Hubral, P. 2007. Seismic True-amplitude Imaging. SEG,
  41. Tulsa, OK.
  42. SEG/EAGE 3D modeling Salt Model Phase-C, 1996.
  43. https://wiki.seg.org/wiki/SEG/EAGE 3D_modeling Salt_Model_Phase-C_1996.
  44. Vishnevsky, D., Lisitsa, V., Tcheverda, V. and Reshetova G., 2014. Numerical study of
  45. the interface errors of finite-difference simulation of seismic waves. Geophysics,
  46. 79(4): T219-T232
  47. Zhang, Y., Xu, S., Bleistein, N. and Zhang, G., 2007. True-amplitude, angle-domain,
  48. common-image gathers from one-way wave-equation migration. Geophysics,
  49. 72(1): S49-S58.
  50. Zhu, T., Gray, S.H. and Wang, D., 2007. Prestack Gaussian-beam depth migration in
  51. anisotropic media. Geophysics, 72: $133-S138.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing