ARTICLE

Fully automatic random noise attenuation using empirical wavelet transform

WEI CHEN1,2 HUI SONG1,2 XIAOYU CHUAI3
Show Less
1 Key Laboratory of Exploration Technology for Oil and Gas Resources of the Ministry of Education, Yangtze University, Daxue Road 111, Caidian District, Wuhan 430100, P.R. China.,
2 Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Daxue Road 111, Caidian District, Wuhan 430100, P.R. China.,
3 Hebei Coal Research Institute, Xingtai 054000, P.R. China.,
JSE 2019, 28(2), 147–162;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, W., Song, H. and Chuai, X.Y., 2019. Fully automatic random noise attenuation using empirical wavelet transform. Journal of Seismic Exploration, 28: 147-162. Strong noise in seismic data seriously affects many steps in seismic data processing and imaging. While most traditional methods depend on carefully tuned input parameters by human, we are proposing an automatic noise attenuation algorithm to facilitate a fast preprocessing of massive prestack seismic data. In the proposed algorithm, the non-stationary seismic data is first adaptively decomposed into empirical components via empirical wavelet transform (EWT) according to the frequency contents in the data. Then, the first component is selected to represent the useful signals. This process can be implemented in a fully automatic way. We compare the decompositions from EWT and the empirical mode decomposition (EMD) and find that the EWT has a stronger capability in separating the useful signals and the random noise. We also test the proposed algorithm in both multi-channel synthetic and field data examples. The results demonstrate that the new adaptive method can obtain better denoising performance than the state-of-the-art methods.

Keywords
random noise suppression
empirical wavelet transform
seismic signal processing
automatic processing
intrinsic mode function
References
  1. Abma, R. and Claerbout, J.,1995. Lateral prediction for noise attenuation by t—x and f—x
  2. techniques. Geophysics, 60: 1887-1896.
  3. Bai, M. and Wu, J., 2017,. Efficient deblending using median filtering without correct
  4. normal moveout - with comparison on migrated images. J. Seismic Explor., 26:
  5. 455-479.
  6. Bai, M. and Wu, J., 2018. Seismic deconvolution using iteartive transform-domain sparse
  7. inversion. J. Seismic Explor., 27: 103-116.
  8. Bai, M., Wu, J., Xie, J. and Zhang, D., 2018. Least-squares reverse time migration of
  9. blended data with low-rank constraint along structural direction. J. Seismic Explor.,
  10. 27: 29-48.
  11. Bekara, M. and van der Baan, M., 2007. Local singular value decomposition for signal
  12. enhancement of seismic data. Geophysics, 72: V59-V65.
  13. Canales, L., 1984. Random noise reduction. Expanded Abstr, 54th Ann. Internat. SEG
  14. Mtg., Atlanta: 525-527.
  15. Candés, E.J., Demanet, L., Donoho, D.L. and Ying, L., 2006. Fast discrete curvelet
  16. transforms. SIAM Multisc. Model. Simulat., 5: 861-899.
  17. Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptive
  18. empirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
  19. Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional
  20. seismic data. Geophys. J. Internat., 209: 21-31.
  21. Chen, Y., 2018a. Automatic microseismic event picking via unsupervised machine
  22. learning. Geophys. J. Internat., 212: 88-102.
  23. Chen, Y., 2018b. Automatic velocity analysis using high-resolution hyperbolic Radon
  24. transform. Geophysis, 83(4): A53-A57.
  25. Chen, Y., 2018c. Non-stationary least-squares complex decomposition for microseismic
  26. noise attenuation. Geophys. J. Internat., 213: 1572-1585.
  27. Chen, Y., Chen, H., Xiang, K. and Chen, X., 2017. Preserving the discontinuities in least-
  28. squares reverse time migration of simultaneous-source data. Geophysics, 82(3).
  29. doi: 10.1190/GEO2016-0456.1.
  30. hen, Y., and Fomel, S., 2015. Random noise attenuation using local signal-and-noise
  31. orthogonalization. Geophysics, 80: WD1—WD9.
  32. hen, Y., 2018. EMD-seislet transform. Geophysics, 83(1): A27-A32.
  33. hen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-source
  34. seismic data using seislet-domain shaping regularization. Geophysics, 79(5):
  35. V179-V 189.
  36. Chen, Y., Huang, W., Zhou, Y., Liu, W. and Zhang, D., 2018. Plane-wave orthogonal
  37. polynomial transform for amplitude-preserving noise attenuation. Geophys. J.
  38. Internat., 214: 2207-2223.
  39. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode
  40. decomposition predictive filtering. Geophysics, 79: V81—V91.
  41. Q
  42. QQ
  43. Chen, Y., Ma, J. and Fomel, S., 2016a. Double-sparsity dictionary for seismic noise
  44. attenuation. Geophysics, 81: V17—V30.
  45. Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016b.
  46. Simultaneous denoising and reconstruction of 5D seismic data via damped
  47. rank-reduction method. Geophys. J. Internat., 206: 1695-1717.
  48. Donoho, D.L. and Johnstone, LM., 1994. Ideal spatial adaptation by wavelet shrinkage:
  49. Biometrika, 81: 425-455.
  50. Fomel, S. and Liu, Y., 2010. Seislet transform and seislet frame. Geophysics, 75:
  51. V25-V38.
  52. Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H., 2016a. Compressive
  53. sensing for seismic data reconstruction using a fast projection onto convex sets
  54. algorithm based on the seislet transform. J. Appl. Geophys., 130: 194-208.
  55. Gan, S., Chen, Y., Zu, S., Qu, S. and Zhong, W., 2015a. Structure-oriented singular value
  56. decomposition for signal enhancement of seismic data. J. Geophys. Engineer., 12:
  57. 262-272.
  58. Gan, S., Wang, S., Chen, Y., Chen, J., Zhong, W. and Zhang, C., 2016b. Improved
  59. random noise attenuation using fx empirical mode decomposition and local
  60. similarity. Appl. Geophys., 13: 127-134.
  61. Gan, S., Wang, S., Chen, Y. and Chen, X., 2016c. Simultaneous-source separation using
  62. iterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-201.
  63. Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016d. Separation of simultaneous
  64. sources using a structural-oriented median filter in the flattened dimension.
  65. Comput. Geosci., 86: 46-54.
  66. Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016e. Velocity analysis of
  67. simultaneous-source data using high-resolution semblance-coping with the strong
  68. noise. Geophys. J. Internat., 204: 768-779.
  69. Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015b. Dealiased seismic data
  70. interpolation using seislet transform with low-frequency constraint. IEEE Geosci.
  71. Remote Sens. Lett., 12: 2150-2154.
  72. Gao, J., Mao, J., Chen, W. and Zheng, Q., 2006. On the denoising method of prestack
  73. seismic data in wavelet domain. Chin. J. Geophys., 49: 1155-1163.
  74. Gilles, J., 2013. Empirical wavelet transform. IEEE Transact. Sign. Process., 61:
  75. 3999-4010.
  76. Li, H., Wang, R., Cao, S., Chen, Y. and W. Huang, W., 2016a. A method for
  77. low-frequency noise suppression based on mathematical morphology in
  78. microseismic monitoring. Geophysics, 81(3), V159-V 167.
  79. Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detection
  80. using multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133:
  81. 39-49.
  82. Liu, G. and Chen, X., 2013. Noncausal f-x-y regularized nonstationary prediction
  83. filtering for random noise attenuation on 3D seismic data. J. Appl. Geophys., 93:
  84. 60-66.
  85. Liu, G., Chen, X., Du, J. and Song, J., 2011. Seismic noise attenuation using
  86. nonstationary polynomial fitting. Appl. Geophys., 8: 18-26.
  87. Liu, W., Cao, S. and Chen, Y., 2016a. Applications of variational mode decomposition in
  88. seismic time-frequency analysis. Geophysics, 81(5): V365-V378.
  89. Liu, W., Cao, S. and Chen, Y., 2016b. Seismic time-frequency analysis via empirical
  90. wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
  91. Liu, W., Cao, S., Chen, Y. and Zu, S., 2016c. An effective approach to attenuate random
  92. noise based on compressive sensing and curvelet transform. J. Geophys. Engineer.,
  93. 13: 135-145.
  94. Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016d. One-step slope estimation
  95. or dealiased seismic data reconstruction via iterative seislet thresholding. IEEE
  96. Geosci. Remote Sens. Lett., 13: 1462-1466.
  97. Liu, W., Cao, S., Liu, Y. and Chen, Y., 2016e. Synchrosqueezing transform and its
  98. applications in seismic data analysis. J. Seismic Explor., 25: 27-44.
  99. Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017. Spectral decomposition for
  100. hydrocarbon detection based on YMD and Teager-Kaiser energy. IEEE Geosci.
  101. Remote Sens. Lett., 14: 539-543.
  102. Neelamani, R., Baumstein, A., Gillard, D., Hadidi, M. and Soroka, W., 2008. Coherent
  103. and random noise attenuation using the curvelet transform. The Leading Edge, 27:
  104. 240-248.
  105. Qu, S., Zhou, H., Chen, Y., Yu, S., Zhang, H., Yuan, J., Yang, Y. and Qin, M., 2015. An
  106. effective method for reducing harmonic distortion in correlated vibroseis data. J.
  107. Appl. Geophys., 115: 120-128.
  108. Qu, S., Zhou, H., Liu, R., Chen, Y., Zu, S., Yu, S., Yuan, J. and Yang, Y., 2016.
  109. Deblending of simultaneous-source seismic data using fast iterative
  110. shrinkage-thresholding algorithm with firm-thresholding. Acta Geophys., 64:
  111. 1064-1092.
  112. Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017. Simultaneous denoising and
  113. interpolation of 2D seismic data using data-driven non-negative dictionary learning.
  114. Sign. Process., 141: 309-321.
  115. Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017. Three-operator proximal
  116. splitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens.
  117. Lett., 14: 1830-1834.
  118. Wu, G., Fomel, S. and Chen, Y., 2018. Data-driven time-frequency analysis of seismic
  119. data using non-stationary prony method. Geophys. Prosp., 66: 85-97.
  120. Wu, J. and Bai, M., 2018. Incoherent dictionary learning for reducing crosstalk noise in
  121. least-squares reverse time migration. Comput. Geosci., 114: 11-21.
  122. Wu, J., Wang, R., Chen, Y., Zhang, Y., Gan, S. and Zhou, C., 2016. Multiples attenuation
  123. using shaping regularization with seislet domain sparsity constraint. J. Seismic
  124. Explor., 25: 1-9.
  125. Xie, J., Di, B., Schmitt, D., Wei, J. and Chen, Y., 2018. Estimation of 6 and cl3 of
  126. organic-rich shale from laser ultrasonic technique (LUT) measurement. Geophysics,
  127. 83(4): C137-C152.
  128. Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016a. Simultaneous sources separation via
  129. an iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13:
  130. 1915-1919.
  131. Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterative
  132. deblending of simultaneous source seismic data using high-order radon transform.
  133. J. Appl. Geophys., 139: 79-90.
  134. Xue, Y., Yang, J., Ma, J. and Chen, Y., 2016b. Amplitude-preserving nonlinear adaptive
  135. multiple attenuation using the high-order sparse radon transform. J. Geophys.
  136. Engineer., 13: 207-219.
  137. Yang, W., Wang, R., Wu, J., Chen, Y., Gan, S. and Zhong, W., 2015. An efficient and
  138. effective common reflection surface stacking approach using local similarity and
  139. plane-wave flattening. J. Appl. Geophys., 117: 67-72.
  140. Yang, Y., Li, D., Tong, T., Zhang, D., Zhou, Y. and Chen, Y., 2018. Denoising
  141. controlled-source electromagnetic data using least-squares inversion. Geophysics,
  142. 83(4): E229-E244.
  143. Zhang, D., Chen, Y., Huang, W. and S. Gan, S., 2016. Multi-step damped multichannel
  144. singular spectrum analysis for simultaneous reconstruction and denoising of 3D
  145. seismic data. J. Geophys. Engineer., 13: 704-720.
  146. Zhang, R. and Ulrych, T., 2003. Physical wavelet frame denoising. Geophysics, 68:
  147. 225-231.
  148. Zhao, Q., Du, Q., Gong, X. and Chen, Y., 2018. Signal-preserving erratic noise
  149. attenuation via iterative robust sparsity-promoting filter. IEEE Transact. Geosci.
  150. Remote Sens., 56: 1558-1564.
  151. Zhong, W., Chen, Y., Gan, S. and Yuan, J., 2016. Li. norm regularization for 3D seismic
  152. data interpolation. J. Seismic Explor., 25: 257-268.
  153. Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an online
  154. subspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.
  155. Zhou, Y., Shi, C., Chen, H., Xie, J., Wu, G. and Chen, Y., 2017. Spike-like blending
  156. noise attenuation using structural low-rank decomposition. IEEE Geosci. Remote
  157. Sens. Lett., 14: 1633-1637.
  158. Zu, S., Zhou, H., Chen, H., Zheng, H. and Chen, Y., 2017a. Two field trials for
  159. deblending of simultaneous source surveys: why we failed and why we succeeded? J.
  160. Appl. Geophys., 143: 182-194.
  161. Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016a. A periodically
  162. varying code for improving deblending of simultaneous sources in marine
  163. acquisition. Geophysics, 81: V213-V225.
  164. Zu, S., Zhou, H., Chen, Y., Pan, X., Gan, S. and Zhang, D., 2016b. Interpolating big gaps
  165. using inversion with slope constraint. IEEE Geosci. Remote Sens. Lett., 13:
  166. 1369-1373.
  167. Zu, S., Zhou, H., Li, Q., Chen, H., Zhang, Q., Mao, W. and Chen, Y., 2017b.
  168. Shot-domain deblending using least-squares inversion. Geophysics, 82(4):
  169. V241-V256.
  170. Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017c. Iterative
  171. deblending of simultaneous-source data using a coherency-pass shaping operator.
  172. Geophys. J. Internat., 211: 541-557.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing