ARTICLE

Analysis of diffractions in dip-angle gathers for transversely isotropic media

YOGESH ARORA ILYA TSVANKIN
Show Less
Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, U.S.A.,
JSE 2018, 27(6), 515–530;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Arora, Y. and Tsvankin, I., 2018. Analysis of diffractions in dip-angle gathers for transversely isotropic media. Journal of Seismic Exploration, 27: 515-530. Diffractions can supplement reflected waves in anisotropic velocity analysis because they increase the aperture and may illuminate parts of the model that do not produce strong reflections. However, enhancement of diffractions and their separation from the more intensive reflections remains a challenging task, especially if the velocity model is not accurate. Here, we analyze diffraction events in dip-angle common-image gathers (CIGs) computed with Kirchhoff migration for transversely isotropic (TI) media. If the velocity model is sufficiently accurate, dip-angle CIGs make it possible to generate diffraction-based depth images using a muting function that depends on reflector dip. We demonstrate application of this methodology to anisotropic diffraction imaging of synthetic data and present a field-data example from the Gulf of Mexico. In the presence of errors in the TI parameters, diffraction and reflection events exhibit different moveout distortions in dip-angle CIGs. In particular, numerical examples show that the moveout of diffractions is sensitive to the key anisotropy parameter 7. Therefore, diffractions in the dip-angle domain could be employed in migration velocity analysis (MVA) to refine the anisotropic velocity model.

Keywords
diffracted waves
dip-angle gathers
anisotropy
transverse isotropy
Kirchhoff migration
diffraction imaging
References
  1. Al-Dajani, A. and Fomel, S., 2010. Fractures detection using multi-azimuth diffractions
  2. focusing measure: Is it feasible? Expanded Abstr., 80th Ann. Internat. SEG Mtg.,
  3. Denver: 287-291.
  4. aaa am 1997. An anisotropic Marmousi model: SEP-95. Stanford Explor. Proj.:
  5. Alkhalifah, T. and Tsvankin, I., 1995. Velocity analysis for transversely isotropic media.
  6. Geophysics, 60: 1550-1566.
  7. Alonaizi, F., Pevzner, R., Bona, A., Alshamry, M., Caspari, E. and Gurevich, B., 2014.
  8. Application of diffracted wave analysis to time-lapse seismic data for CO2 leakage
  9. detection. Geophys. Prosp., 60: 197-209.
  10. Arora, Y. and Tsvankin, I., 2016. Separation of diffracted waves in transversely isotropic
  11. media. Studia Geophys. Geodaet., 60: 487-499.
  12. Audebert, F., Froidevaux, P., Rakotoarisoa, H. and Lucas, J.S., 2002. Insights into
  13. mipenoe in the < domain. Expanded Abstr., 72nd Ann. Internat. SEG Mtg.,
  14. Salt Lake City: 1188-1191.
  15. Berkovitch, A., Belfer, I., Hassin, Y. and Landa, E., 2009. Diffraction imaging by
  16. multifocusing. Geophysics, 74(6): WCA75-WCA81.
  17. Billette, F., Bégat, S.L., Podvin, P. and Lambaré, G., 2003. Practical aspects and
  18. applications of 2D stereotomography. Geophysics, 68: 1008-1021.
  19. Bleistein, N., Cohen, J.K. and Stockwell Jr., J.W., 2013. Mathematics of Multi-
  20. dimensional Seismic Ima; ing, Migration, and Inversion. Springer Science &
  21. Business Media, 13, New York.
  22. Brandsberg-Dahl, S., Ursin, B. and de Hoop, M., 2003. Seismic velocity analysis in the
  23. scattering- angle/azimuth domain. Geophys. Prosp., 51: 295-314.
  24. De Vries, D. and Berkhout, A.J., 1984. Velocity analysis based on minimum entropy.
  25. Geophysics, 49: 2132-2142.
  26. Fomel, ma Applications of plane-wave destruction filters. Geophysics, 67:1946-
  27. Fomel, S., Landa, E. and Taner, M., 2007. Poststack velocity analysis by separation and
  28. imaging of seismic diffractions. Geophysics, 56(6): U89-U94.
  29. Hale, D., 1992. Migration by the Kirchhoff, slant stack, and Gaussian beam methods.
  30. CWP Project Review Report.
  31. Harlan, W.S., Claerbout, J.F. and Rocca, F., 1984. Signal/noise separation and velocity
  32. estimation. Geophysics, 49: 1869-1880.
  33. Khaidukov, V., Landa, E. and Moser, T.J., 2004. Diffraction imaging ve focusing-
  34. defocusing: An outlook on seismic superresolution. Geophysics, 69: 1478-1490.
  35. Klem-Musatov, K.D., Hron, F., Lines, L.R. and Meeder, C.A., 1994. Theory of Seismic
  36. Diffractions. SEG, Tulsa, OK.
  37. Klokov, A. and Fomel, S., 2012. Separation and imaging of seismic diffractions using
  38. migrated dip-angle gathers. Geophysics, 77(6): $131-S143.
  39. Kozlov, E., Barasky, N., Korolev, E., Antonenko, A. and Koshchuk, E., 2004. Imaging
  40. scattering 0 esi masked by specular reflections. Expanded Abstr., 74th Ann.
  41. Internat. SEG Mtg., Denver: 1131-1134.
  42. Landa, E., Fomel, S. and Reshef, M., 2008. Separation, imaging, and velocity analysis of
  43. seismic diffractions using migrated dip-angle gathers. Expanded Abstr., 78th
  44. Ann. Internat. SEG Mtg., Las Vegas.
  45. Li, V., Tsvankin, I. and Alkhalifah, T., 2016. Analysis of RTM extended images for VTI
  46. media. Geophysics, 81(3): $139-S150.
  47. Liu, 和信 analytical approach to migration velocity analysis. Geophysics, 62:
  48. Moser, ee ~ Howard, C., 2008. Diffraction imaging in depth. Geophys. Prosp., 56: 627-
  49. Reshef, M. and Landa, E., 2009. Post-stack velocity analysis in the dip-angle domain
  50. using diffractions. Geophys. Prosp., 57: 811-821.
  51. Sarkar, D. and Tsvankin, I., 2004. Migration velocity analysis in factorized VTI media.
  52. Geophysics, 69: 708-718.
  53. Sava, P.C., Biondi, B. and Etgen, J., 2005. Wave-equation migration velocity analysis by
  54. focusing diffractions and reflections. Geophysics, 70: U19-U27.
  55. Séllner, W. and Yang, W., 2002. Diffraction response simulation: a 3D velocity inversion
  56. tool. Expanded Abstr., 72nd Ann. Internat. SEG Mtg., Salt Lake City: 2293-2296.
  57. Sturzu, I., Popovici, A.M., Tanushev, N., Musat, I., Pelissier, A. and Moser, T.J., 2013.
  58. Seed arity gathers for diffraction imaging. Extended Abstr., 75th EAGE Conf.,
  59. ondon.
  60. Tsvankin, I., 2012. Seismic Signatures and Analysis of Reflection Data in Anisotropic
  61. Media, 3rd ed. SEG, Tulsa, OK.
  62. Verschuur, D. and Prein, R., 1999. Multiple removal results from Delft University. The
  63. Leading Edge, 18: 86-91.
  64. Waheed, U.B., Alkhalifah, T. and Stovas, A., 2013a. Diffraction traveltime cee
  65. we ‘i with an inhomogeneous background. Geophysics, 78(5): WC103-
  66. Waheed, U.B., Stovas, A. and Alkhalifah, T., 2013b. Anisotropic parameter inversion in
  67. ie media using diffraction data. Expanded Abstr., 83rd Ann. Internat. SEG Mtg.,
  68. ouston.
  69. Wang, X. and Tsvankin, I., 2013. Multiparameter TTI tomography of P-wave reflection
  70. and VSP data. Geophysics, 78(5): WC51-WC63.
  71. Woodward, M.J., Nichols, D., Zdraveva, O., Whitfield, P. and Johns, T., 2008. A decade
  72. of tomography. Geophysics, 73(5): VES-VE11.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing