Cite this article
1
Download
40
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Seismic monitoring of CO2 injection using a distorted Born T-matrix approach in acoustic approximation

KENNETH MUHUMUZA1 MORTEN JAKOBSEN2 TEEMU LUOSTARI1 TIMO LÄHIVAARA1
Show Less
1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,
2 Department of Earth Sciences, University of Bergen, Bergen, Norway.,
JSE 2018, 27(5), 403–431;
Submitted: 17 September 2017 | Accepted: 2 July 2018 | Published: 1 October 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Muhumuza, K., Jakobsen, M., Luostari, T. and Lahivaara’ T., 2018. Seismic monitoring of CO injection using a distorted Born T-matrix approach in acoustic approximation. Journal of Seismic Exploration, 27: 403-431. Monitoring the injected CO: distribution is at the core of any carbon capture and storage project. Waveform inversion methods can be used to obtain high-resolution images for monitoring the injected CO in the subsurface, but remains computationally challenging. Efficient modelling approximations are desirable for solving time-lapse inversion problems and to test the settings in which they give accurate predictions. We employed the distorted Born approximation (based on scattering integral equation) to simulate time-lapse synthetic data for a CO injection scenario with a single injector, and benchmarked it against the finite element and exact T-matrix approach. The distorted Born approximation presented, considers a general heterogeneous reference medium; and provides a framework for imaging of regions of time-lapse variation using the baseline survey as a reference and the monitor survey as perturbed to directly estimate the perturbation. Based on our simplified velocity model of CO injection, synthetic testing demonstrated that the new distorted Born approximation provides accurate predictions of the difference data seismograms. We tested the distorted Born iterative T-matrix (DBIT) inversion method on a synthetic dataset generated using T-matrix forward modelling, and 0963-065 1/18/$5.00 © 2018 Geophysical Press Ltd. 404 we investigated three inversion approaches. The inversion results showed that the DBIT method sufficiently retrieves the time-lapse velocity changes even in the cases of relatively low signal-to-noise ratio. The inversion approach that focused on the time- lapse data variation (perturbation only) gave improved results in noisy and noise free environments. We also applied DBIT inversion to a synthetic dataset generated using the finite element method, in order to avoid inverse crimes. The inversion recovered the trend of the velocity models, but with some inaccuracies in the estimates for the time- lapse velocity changes. The DBIT method which considers a dynamic background media and T-matrix approach may be a potential tool in seismic characterisation of subsurface reservoirs and efficient for monitoring of CO2 sequestration.

Keywords
waveform inversion
inverse theory
time-lapse seismic
scattering theory
wave propagation
computational seismology
CO2 sequestration
References
  1. Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., Thore, P. and Virieux, J.,
  2. Time-lapse seismic imaging using regularized fullwaveform inversion witha prior model: which strategy? Geophys. Prosp., 63: 78-98.
  3. Ayeni, G. and Biondi, B., 2010. Target-oriented joint least-squares migration/inversionof time-lapse seismic data sets. Geophysics, 75: R61-R73.
  4. Ayeni, G. and Biondi, B., 2011. Wave-equation inversion of time-lapse seismic data sets.
  5. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio.
  6. Barnes, C. and Charara, M., 2009. The domain of applicability of acoustic full-waveforminversion for marine seismic data. Geophysics., 74: WCC91-WCC103.
  7. Carcione, J.M., Picotti, S., Gei, D. and Rossi, G., 2006. Physics and seismic modeling formonitoring CO: storage. Pure Appl. Geophys, 163: 175-207.
  8. Cerveny, V., 2005. Seismic Ray Theory. Cambridge University Press, Cambridge.
  9. Chadwick, R., Noy, D., Arts, R. and Eiken, O., 2009. Latest time-lapse seismic data fromsleipner yield new insights into CO2 plume development. Energy Proced., 1:2103-2110.
  10. Cohen, J.K. and Bleistein, N., 1977. An inverse method for determining small variationsin propagation speed. SIAM J. Appl. Mathemat., 32: 784-799.
  11. Colton, D. and Kress, R., 2012. Inverse Acoustic and Electromagnetic Scattering Theory.Springer Science & Business Media, 93.
  12. Couéslan, M.L., Smith, V., El-Kaseeh, G., Gilbert, J., Preece, N., Zhang, L. and Gulati,
  13. J., 2014. Development and implementation of a seismic characterization and CO2monitoring program for the Illinois basin—Decatur project: Greenhouse Gases.Sci. Technol., 4: 626-644.
  14. Eikrem, K., Jakobsen, M. and Nevdal, G., 2017. Bayesian inversion of time-lapseseismic waveform data using an integral equation method. Abstracts, IOR 2017-19th Europ. Symp. Improv. Oil Recov.
  15. Eikrem, K.S., Neevdal, G., Jakobsen, M. and Chen, Y., 2016. Bayesian estimation ofreservoir properties: effects of uncertainty quantification of 4D seismic data.Computat. Geosci., 20: 1211-1229.
  16. Farquharson, C.G. and Oldenburg, D.W., 2004. A comparison of automatic techniquesfor estimating the regularization parameter in non-linear inverse problems.Geophys. J. Internat., 156: 411-425.
  17. Gritto, R., Daley, T.M. and Myer, L.R., 2004. Joint cross-well and single-well seismicstudies of CO2 injection in an oil reservoir. Geophys. Prosp., 52: 323-339.
  18. Haffinger, P., Gisolf, A. and van den Berg, P., 2013. Towards high resolutionquantitative subsurface models by full waveform inversion. Geophys. J. Internat.,193: 788-797.
  19. Ikelle, L.T. and Amundsen, L., 2005. Introduction to Petroleum Seismology. SEG, Tulsa,OK.
  20. Innanen, K.A., Naghizadeh, M. and Kaplan, S.T., 2014. Perturbation methods for twospecial cases of the time-lapse seismic inverse problem. Geophys. Prosp., 62:453-474.
  21. IPCC, 2014. Climate Change 2014 - impacts, adaptation and vulnerability. RegionalAspects. Cambridge University Press, Cambridge.
  22. Ivandic, M., Juhlin, C., Liith, S., Bergmann, P., Kashubin, A., Sopher, D., Ivanova, A.,
  23. Baumann, G. and Henninges, J., 2015. Geophysical monitoring at the Ketzin pilotsite for CO, storage: New insights into the plume evolution. Internat. J. Greenh.Gas Contr., 32: 90-105.
  24. Jakobsen, M., 2012. T-matrix approach to seismic forward modelling in the acousticapproximation. Studia Geophys. Geodaet., 56: 1-20.
  25. Jakobsen, M. and Ursin, B., 2015. Full waveform inversion in the frequency domainusing direct iterative T-matrix methods. J. Geophys. Engineer., 12: 400.
  26. Kaipio, J. and Somersalo, E., 2006. Statistical and Computational Inverse Problems.Springer Science & Business Media, 160.
  27. Kasahara, J. and Hasada, Y., 2016. Time Lapse Approach to Monitoring Oil, Gas, and
  28. CO)? Storage by Seismic Methods. Elsevier Science, Amsterdam.
  29. Kim, Y., Cho, H., Min, D.-J. and Shin, C., 2011. Comparison of frequency-selectionstrategies for 2D frequency-domain acoustic waveform inversion. Pure Appl.Geophys., 168: 1715-1727.
  30. Kirchner, A. and Shapiro, S.A., 2001. Fast repeat-modelling of time-lapse seismograms.Geophys. Prosp., 49: 557-569.
  31. Kouri, DJ. and Vijay, A., 2003. Inverse scattering theory: Renormalization of the
  32. Lippmann-Schwinger equation for acoustic scattering in one dimension. Phys.Rev. E, 67: 046614.
  33. Lahivaara, T., Dudley Ward, N., Huttunen, T., Rawlinson, Z. and Kaipio, J., 2015.
  34. Estimation of aquifer dimensions from passive seismic signals in the presence ofmaterial and source uncertainties. Geophys. J. Internat., 200: 1662-1675.
  35. Liao, W., 2015. An adjoint-based Jacobi-type iterative method for elastic full waveforminversion problem. Appl. Mathemat. Computat., 267: 56-70.
  36. Maharramov, M. and Biondi, B., 2014. Robust joint full-waveform inversion of time-lapse seismic data sets with total-variation regularization. arXiv: 1408.0645.
  37. Marston, P.M., 2013. Pressure profiles for CO2-EOR and CCS: Implications forregulatory frameworks: Greenhouse Gases. Sci. Technol., 3: 165-168.
  38. Moser, T.J., 2012. Review of ray-Born forward modeling for migration and diffractionanalysis. Studia Geophys. Geodaet., 56: 411-432.
  39. Newton, R.G., 2013. Scattering Theory of Waves and Particles. Springer Science &Business Media.
  40. Nowroozi, D., Lawton, D.C. and Khaniani, H., 2016. A framework for full waveformmodeling and imaging for CO: injection at the FRS project. Abstracts,GeoConvention 2016.
  41. Pevzner, R., Urosevic, M., Popik, D., Shulakova, V., Tertyshnikov, K., Caspari, E.,
  42. Correa, J., Dance, T., Kepic, A. and Glubokovskikh, S., 2017. 4D surface seismictracks small supercritical CO, injection into the subsurface: CO2CRC Otwayproject. Internat. J. Greenh. Gas Contr., 63: 150-157.
  43. Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theoryand verification in a physical scale model. Geophysics, 64: 888-901.
  44. Prieux, V., Operto, S., Brossier, R. and Virieux, J., 2009. Application of acoustic fullwaveform inversion to the synthetic Valhall velocity model. Expanded Abstr.,79th Ann. Internat. SEG Mtg., Houston.
  45. Queier, M. and Singh, S.C., 2013. Full waveform inversion in the time lapse modeapplied to CO storage at Sleipner: Geophys. Prosp., 61: 537-555.
  46. Raknes, E.B., Weibull, W. and Arntsen, B., 2013. Time-lapse full waveform inversion:
  47. Synthetic and real data examples. Expanded Abstr., 83rd Ann. Internat. SEGMtg., Houston.
  48. Raknes, E.B., Weibull, W. and Arntsen, B., 2015. Seismic imaging of the carbon dioxidegas cloud at Sleipner using 3D elastic time-lapse full waveform inversion.Internat. J. Greenh. Gas Contr., 42: 26-45.
  49. Romdhane, A. and Querendez, E., 2014. CO> characterization at the sleipner field withfull waveform inversion: Application to synthetic and real data. Energy Proced.,63: 4358-4365.
  50. Shahin, A., Stoffa, P.L., Tatham, R.H. and Seif, R., 2011. Accuracy required in seismicmodeling to detect production-induced time-lapse signatures. Expanded Abstr.,81st Ann. Internat. SEG Mtg., San Antonio.
  51. Sheen, D.H., Tuncay, K., Baag, C.E. and Ortoleva, P.J., 2006. Time domain Gauss-
  52. Newton seismic waveform inversion in elastic media. Geophys. J. Internat., 167:1373-1384.
  53. Shi, J.-Q., Xue, Z. and Durucan, S., 2007. Seismic monitoring and modelling ofsupercritical CO; injection into a water-saturated sandstone: Interpretation of P-wave velocity data. Internat. J. Greenh. Gas Contr., 1: 473-480.
  54. Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategyfor selecting temporal frequencies. Geophysics, 69: 231-248.
  55. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation.Geophysics, 49: 1259-1266.
  56. Thierry, P., Operto, S. and Lambaré, G., 1998. Fast 2-D ray+Born migration/inversion incomplex media. Geophysics, 64: 162-181.
  57. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in explorationgeophysics. Geophysics, 74: WCC1-WCC26.
  58. White, D., 2011. Geophysical monitoring of the Weyburn CO); flood: Results during 10years of injection. Energy Proced., 4: 3628-3635.
  59. Willemsen, B., Cao, J. and Roy, B., 2016. The impact of the acoustic approximation ontime-lapse FWI. Expanded Abstr., 86th Ann. Internat. SEG Mtg., Dallas: 5435-
  60. Zhang, F., Juhlin, C., Ivandic, M. and Liith, S., 2013. Application of seismic fullwaveform inversion to monitor CO injection: Modelling and a real data examplefrom the Ketzin site, Germany. Geophys. Prosp., 61: 284-299.
  61. Zhang, F., Juhlin, C., Niemi, A., Huang, F. and Bensabat, J., 2016. A feasibility andefficiency study of seismic waveform inversion for time-lapse monitoring ofonshore CO, geological storage sites using reflection seismic acquisitiongeometries. Internat. J. Greenh. Gas Contr., 48: 134-141.
  62. Zhang, H., 2006. Direct Non-linear Acoustic and Elastic Inversion: Towardsfundamentally new comprehensive and realistic target identification. Ph.D. thesis,University of Houston.
  63. Zhang, Z. and Huang, L., 2013. Double-difference elastic-waveform inversion with priorinformation for time-lapse monitoring. Geophysics, 78: R259-R273.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing