Seismic monitoring of CO2 injection using a distorted Born T-matrix approach in acoustic approximation

Muhumuza, K., Jakobsen, M., Luostari, T. and Lahivaara’ T., 2018. Seismic monitoring of CO injection using a distorted Born T-matrix approach in acoustic approximation. Journal of Seismic Exploration, 27: 403-431. Monitoring the injected CO: distribution is at the core of any carbon capture and storage project. Waveform inversion methods can be used to obtain high-resolution images for monitoring the injected CO in the subsurface, but remains computationally challenging. Efficient modelling approximations are desirable for solving time-lapse inversion problems and to test the settings in which they give accurate predictions. We employed the distorted Born approximation (based on scattering integral equation) to simulate time-lapse synthetic data for a CO injection scenario with a single injector, and benchmarked it against the finite element and exact T-matrix approach. The distorted Born approximation presented, considers a general heterogeneous reference medium; and provides a framework for imaging of regions of time-lapse variation using the baseline survey as a reference and the monitor survey as perturbed to directly estimate the perturbation. Based on our simplified velocity model of CO injection, synthetic testing demonstrated that the new distorted Born approximation provides accurate predictions of the difference data seismograms. We tested the distorted Born iterative T-matrix (DBIT) inversion method on a synthetic dataset generated using T-matrix forward modelling, and 0963-065 1/18/$5.00 © 2018 Geophysical Press Ltd. 404 we investigated three inversion approaches. The inversion results showed that the DBIT method sufficiently retrieves the time-lapse velocity changes even in the cases of relatively low signal-to-noise ratio. The inversion approach that focused on the time- lapse data variation (perturbation only) gave improved results in noisy and noise free environments. We also applied DBIT inversion to a synthetic dataset generated using the finite element method, in order to avoid inverse crimes. The inversion recovered the trend of the velocity models, but with some inaccuracies in the estimates for the time- lapse velocity changes. The DBIT method which considers a dynamic background media and T-matrix approach may be a potential tool in seismic characterisation of subsurface reservoirs and efficient for monitoring of CO2 sequestration.
- Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., Thore, P. and Virieux, J.,
- Time-lapse seismic imaging using regularized fullwaveform inversion with
- a prior model: which strategy? Geophys. Prosp., 63: 78-98.
- Ayeni, G. and Biondi, B., 2010. Target-oriented joint least-squares migration/inversion
- of time-lapse seismic data sets. Geophysics, 75: R61-R73.
- Ayeni, G. and Biondi, B., 2011. Wave-equation inversion of time-lapse seismic data sets.
- Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio.
- Barnes, C. and Charara, M., 2009. The domain of applicability of acoustic full-waveform
- inversion for marine seismic data. Geophysics., 74: WCC91-WCC103.
- Carcione, J.M., Picotti, S., Gei, D. and Rossi, G., 2006. Physics and seismic modeling for
- monitoring CO: storage. Pure Appl. Geophys, 163: 175-207.
- Cerveny, V., 2005. Seismic Ray Theory. Cambridge University Press, Cambridge.
- Chadwick, R., Noy, D., Arts, R. and Eiken, O., 2009. Latest time-lapse seismic data from
- sleipner yield new insights into CO2 plume development. Energy Proced., 1:
- 2103-2110.
- Cohen, J.K. and Bleistein, N., 1977. An inverse method for determining small variations
- in propagation speed. SIAM J. Appl. Mathemat., 32: 784-799.
- Colton, D. and Kress, R., 2012. Inverse Acoustic and Electromagnetic Scattering Theory.
- Springer Science & Business Media, 93.
- Couéslan, M.L., Smith, V., El-Kaseeh, G., Gilbert, J., Preece, N., Zhang, L. and Gulati,
- J., 2014. Development and implementation of a seismic characterization and CO2
- monitoring program for the Illinois basin—Decatur project: Greenhouse Gases.
- Sci. Technol., 4: 626-644.
- Eikrem, K., Jakobsen, M. and Nevdal, G., 2017. Bayesian inversion of time-lapse
- seismic waveform data using an integral equation method. Abstracts, IOR 2017-
- 19th Europ. Symp. Improv. Oil Recov.
- Eikrem, K.S., Neevdal, G., Jakobsen, M. and Chen, Y., 2016. Bayesian estimation of
- reservoir properties: effects of uncertainty quantification of 4D seismic data.
- Computat. Geosci., 20: 1211-1229.
- Farquharson, C.G. and Oldenburg, D.W., 2004. A comparison of automatic techniques
- for estimating the regularization parameter in non-linear inverse problems.
- Geophys. J. Internat., 156: 411-425.
- Gritto, R., Daley, T.M. and Myer, L.R., 2004. Joint cross-well and single-well seismic
- studies of CO2 injection in an oil reservoir. Geophys. Prosp., 52: 323-339.
- Haffinger, P., Gisolf, A. and van den Berg, P., 2013. Towards high resolution
- quantitative subsurface models by full waveform inversion. Geophys. J. Internat.,
- 193: 788-797.
- Ikelle, L.T. and Amundsen, L., 2005. Introduction to Petroleum Seismology. SEG, Tulsa,
- OK.
- Innanen, K.A., Naghizadeh, M. and Kaplan, S.T., 2014. Perturbation methods for two
- special cases of the time-lapse seismic inverse problem. Geophys. Prosp., 62:
- 453-474.
- IPCC, 2014. Climate Change 2014 - impacts, adaptation and vulnerability. Regional
- Aspects. Cambridge University Press, Cambridge.
- Ivandic, M., Juhlin, C., Liith, S., Bergmann, P., Kashubin, A., Sopher, D., Ivanova, A.,
- Baumann, G. and Henninges, J., 2015. Geophysical monitoring at the Ketzin pilot
- site for CO, storage: New insights into the plume evolution. Internat. J. Greenh.
- Gas Contr., 32: 90-105.
- Jakobsen, M., 2012. T-matrix approach to seismic forward modelling in the acoustic
- approximation. Studia Geophys. Geodaet., 56: 1-20.
- Jakobsen, M. and Ursin, B., 2015. Full waveform inversion in the frequency domain
- using direct iterative T-matrix methods. J. Geophys. Engineer., 12: 400.
- Kaipio, J. and Somersalo, E., 2006. Statistical and Computational Inverse Problems.
- Springer Science & Business Media, 160.
- Kasahara, J. and Hasada, Y., 2016. Time Lapse Approach to Monitoring Oil, Gas, and
- CO)? Storage by Seismic Methods. Elsevier Science, Amsterdam.
- Kim, Y., Cho, H., Min, D.-J. and Shin, C., 2011. Comparison of frequency-selection
- strategies for 2D frequency-domain acoustic waveform inversion. Pure Appl.
- Geophys., 168: 1715-1727.
- Kirchner, A. and Shapiro, S.A., 2001. Fast repeat-modelling of time-lapse seismograms.
- Geophys. Prosp., 49: 557-569.
- Kouri, DJ. and Vijay, A., 2003. Inverse scattering theory: Renormalization of the
- Lippmann-Schwinger equation for acoustic scattering in one dimension. Phys.
- Rev. E, 67: 046614.
- Lahivaara, T., Dudley Ward, N., Huttunen, T., Rawlinson, Z. and Kaipio, J., 2015.
- Estimation of aquifer dimensions from passive seismic signals in the presence of
- material and source uncertainties. Geophys. J. Internat., 200: 1662-1675.
- Liao, W., 2015. An adjoint-based Jacobi-type iterative method for elastic full waveform
- inversion problem. Appl. Mathemat. Computat., 267: 56-70.
- Maharramov, M. and Biondi, B., 2014. Robust joint full-waveform inversion of time-
- lapse seismic data sets with total-variation regularization. arXiv: 1408.0645.
- Marston, P.M., 2013. Pressure profiles for CO2-EOR and CCS: Implications for
- regulatory frameworks: Greenhouse Gases. Sci. Technol., 3: 165-168.
- Moser, T.J., 2012. Review of ray-Born forward modeling for migration and diffraction
- analysis. Studia Geophys. Geodaet., 56: 411-432.
- Newton, R.G., 2013. Scattering Theory of Waves and Particles. Springer Science &
- Business Media.
- Nowroozi, D., Lawton, D.C. and Khaniani, H., 2016. A framework for full waveform
- modeling and imaging for CO: injection at the FRS project. Abstracts,
- GeoConvention 2016.
- Pevzner, R., Urosevic, M., Popik, D., Shulakova, V., Tertyshnikov, K., Caspari, E.,
- Correa, J., Dance, T., Kepic, A. and Glubokovskikh, S., 2017. 4D surface seismic
- tracks small supercritical CO, injection into the subsurface: CO2CRC Otway
- project. Internat. J. Greenh. Gas Contr., 63: 150-157.
- Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory
- and verification in a physical scale model. Geophysics, 64: 888-901.
- Prieux, V., Operto, S., Brossier, R. and Virieux, J., 2009. Application of acoustic full
- waveform inversion to the synthetic Valhall velocity model. Expanded Abstr.,
- 79th Ann. Internat. SEG Mtg., Houston.
- Queier, M. and Singh, S.C., 2013. Full waveform inversion in the time lapse mode
- applied to CO storage at Sleipner: Geophys. Prosp., 61: 537-555.
- Raknes, E.B., Weibull, W. and Arntsen, B., 2013. Time-lapse full waveform inversion:
- Synthetic and real data examples. Expanded Abstr., 83rd Ann. Internat. SEG
- Mtg., Houston.
- Raknes, E.B., Weibull, W. and Arntsen, B., 2015. Seismic imaging of the carbon dioxide
- gas cloud at Sleipner using 3D elastic time-lapse full waveform inversion.
- Internat. J. Greenh. Gas Contr., 42: 26-45.
- Romdhane, A. and Querendez, E., 2014. CO> characterization at the sleipner field with
- full waveform inversion: Application to synthetic and real data. Energy Proced.,
- 63: 4358-4365.
- Shahin, A., Stoffa, P.L., Tatham, R.H. and Seif, R., 2011. Accuracy required in seismic
- modeling to detect production-induced time-lapse signatures. Expanded Abstr.,
- 81st Ann. Internat. SEG Mtg., San Antonio.
- Sheen, D.H., Tuncay, K., Baag, C.E. and Ortoleva, P.J., 2006. Time domain Gauss-
- Newton seismic waveform inversion in elastic media. Geophys. J. Internat., 167:
- 1373-1384.
- Shi, J.-Q., Xue, Z. and Durucan, S., 2007. Seismic monitoring and modelling of
- supercritical CO; injection into a water-saturated sandstone: Interpretation of P-
- wave velocity data. Internat. J. Greenh. Gas Contr., 1: 473-480.
- Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategy
- for selecting temporal frequencies. Geophysics, 69: 231-248.
- Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation.
- Geophysics, 49: 1259-1266.
- Thierry, P., Operto, S. and Lambaré, G., 1998. Fast 2-D ray+Born migration/inversion in
- complex media. Geophysics, 64: 162-181.
- Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration
- geophysics. Geophysics, 74: WCC1-WCC26.
- White, D., 2011. Geophysical monitoring of the Weyburn CO); flood: Results during 10
- years of injection. Energy Proced., 4: 3628-3635.
- Willemsen, B., Cao, J. and Roy, B., 2016. The impact of the acoustic approximation on
- time-lapse FWI. Expanded Abstr., 86th Ann. Internat. SEG Mtg., Dallas: 5435-
- Zhang, F., Juhlin, C., Ivandic, M. and Liith, S., 2013. Application of seismic full
- waveform inversion to monitor CO injection: Modelling and a real data example
- from the Ketzin site, Germany. Geophys. Prosp., 61: 284-299.
- Zhang, F., Juhlin, C., Niemi, A., Huang, F. and Bensabat, J., 2016. A feasibility and
- efficiency study of seismic waveform inversion for time-lapse monitoring of
- onshore CO, geological storage sites using reflection seismic acquisition
- geometries. Internat. J. Greenh. Gas Contr., 48: 134-141.
- Zhang, H., 2006. Direct Non-linear Acoustic and Elastic Inversion: Towards
- fundamentally new comprehensive and realistic target identification. Ph.D. thesis,
- University of Houston.
- Zhang, Z. and Huang, L., 2013. Double-difference elastic-waveform inversion with prior
- information for time-lapse monitoring. Geophysics, 78: R259-R273.