ARTICLE

Simple and fast gradient-based impedance inversion using total variation regularization

DANIEL O. PÉREZ1,2 DANILO R. VELIS1
Show Less
1 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and CONICET; Argentina,
2 YPF Tecnología S.A., Av. Del Petroleo s/n, Berisso, Argentina,
JSE 2018, 27(5), 473–486;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Pérez D.O. and Velis D.R., 2018. Simple and fast gradient-based impedance inversion using total variation regularization. Journal of Seismis Exploration, 27: 473-486. We present an algorithm to estimate blocky images of the subsurface acoustic impedance (AI) from poststack seismic data. We regularize the resulting inverse problem, which is inherently ill-posed and non-unique, by means of the total variation semi-norm (TV). This allows us promote stable and blocky solutions which are, by virtue of the capability of TV to handle edges properly, adequate to model layered earth models with sharp contrasts. The use of the TV leads to a convex objective function easily minimized using a gradient-based algorithm that requires, in contrast to other AI inversion methods based on TV regularization, simple matrix-vector multiplications and no direct matrix inversion. The latter makes the algorithm numerically stable, easy to apply, and economic in terms of computational cost. Tests on synthetic and field data show that the proposed method, contrarily to conventional 1p- or ll-norm regularized solutions is able to provide blocky AI images that preserve the subsurface layered structure with good lateral continuity from noisy observations.

Keywords
acoustic impedance
inversion
poststack
total variation
blocky
FISTA
References
  1. Beck, A. and Teboulle, M., 2009a. Fast gradient-based algorithms for constrained total
  2. variation image denoising and deblurring problems. IEEE Transact. Image
  3. Process., 18: 2419-2434.
  4. Beck, A. and Teboulle, M., 2009b. A fast iterative shrinkage-thresholding algorithm for
  5. linear inverse problems. SIAM J. Imag. Sci., 2: 183-202.
  6. Chambolle, A., 2004. An algorithm for total variation minimization and applications. J.
  7. Mathemat. Imag. Vis., 20: 89-97.
  8. Cooke, D. and Schneider, W., 1983. Generalized linear inversion of reflection seismic
  9. data. Geopphysics, 46: 665-676.
  10. Farquharson, C.G. and Oldenburg, D.W., 2004. A comparison of automatic techniques
  11. for estimating the regularization parameter in non-linear inverse problems.
  12. Geophys. J. Internat., 156: 411-425.
  13. Figueiredo, M.A.T., Nowak, R.D. and Wright, S.J., 2007. Gradient projection for sparse
  14. reconstruction: Application to compressed sensing and other inverse problems.
  15. IEEE J. Select. Top. Sign. Process., 1: 586-597.
  16. Gelpi, G.R., Pérez, D.O. and Velis, D.R., 2017. Estimacion de la fase de la ondicula
  17. sismica mediante la minimizacidn de la norma 1;. XVII Worksh. Informat.
  18. Process. Contr. (RPIC): 1-6.
  19. Gholami, A., 2015. Nonlinear multichannel impedance inversion by total-variation
  20. regularization. Geophysics, 80: R217-R224.
  21. Gholami, A., 2016. A fast automatic multichannel blind seismic inversion for high-
  22. resolution impedance recovery. Geophysics, 81: V357-V364.
  23. Gholami, A. and Sacchi, M.D., 2013. Fast 3D blind seismic deconvolution via
  24. constrained total variation and gev. SIAM J. Imag. Sci., 6: 2350-2369.
  25. Goldstein, T. and Osher, S., 2009. The split Bregman method for |;-regularized problems.
  26. SIAM J. Imag. Sci., 2: 323-343.
  27. Gramfort, A., Strohmeier, D., Haueisen, J., Hamalainen, M. and Kowalski, M., 2013.
  28. Time-frequency mixed-norm estimates: Sparse m/eeg imaging with non-
  29. stationary source activations. Neurolmage, 70: 410-422.
  30. Hennenfent, G., van den Berg, E., Friedlander, M.P. and Hermann, F.J., 2008. New
  31. insights into one-norm solvers from the Pareto curve. Geophysics, 73: 23-26.
  32. Larson, R. and Edwards, B.H., 1999. Elementary Linear Algebra, 4th ed.. Houghton
  33. Mifflin Company, Boston.
  34. Li, S. and Peng, Z., 2017. Seismic acoustic impedance inversion with multi-parameter
  35. regularization. J. Geophys. Engineer., 14: 520.
  36. Liu, X. and Yin, X., 2015. Blocky inversion with total variation regularization and
  37. bounds constraint. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New Orleans:
  38. 3497-3501.
  39. Malinverno, A. and Briggs, V.A., 2004. Expanded uncertainty quantification in inverse
  40. problems: Hierarchical bayes and empirical bayes. Geophysics, 69: 1005-1016.
  41. Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade for
  42. Marmousi. The Leading Edge, 25: 156-166.
  43. Nikolova, M., 2002. Minimizers of cost-functions involving nonsmooth data-fidelity
  44. terms. “Application to the processing of outliers. SIAM J. Numer. Analys., 40:
  45. 965-994,
  46. Oldenburg, D.W., Scheuer, T. and Levy, S., 1983. Recovery of the acoustic impedance
  47. from reflection seismograms. Geophysics, 48: 1318-1337.
  48. Osher, S., Burger, M., Goldfarb, D., Xu, J. and Yin, W., 2005. An iterative regularization
  49. method for total variation-based image restoration. Multisc. Model. Simulat., 4:
  50. 460-489.
  51. Palomar, D.P. and Eldar, Y.C. (Eds.), 2010. Convex Optimization in Signal Processing
  52. and Communications. Cambridge University Press, Cambridge.
  53. Paragios, N., Chen, Y. and Faugeras, O., 2005. Handbook of Mathematical Models in
  54. Computer Vision. Springer USA, New York.
  55. Pérez, D.O., Velis, D.R. and Sacchi, M.D., 2013. High-resolution prestack seismic
  56. inversion using a hybrid FISTA least-squares strategy. Geophysics, 78: R185-
  57. R195.
  58. Rudin, L.A., 1987. Images, Numerical Analysis of Singularities and Shock Filters. PhD
  59. thesis, California Institute of Technology, Pasadena.
  60. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal
  61. algorithms. Physica D: Nonlin. Phenom., 60: 259-268.
  62. Tarantola, A., 2005. Inverse problem theory and methods for model parameter
  63. estimation: SIAM J. Appl. Mathemat.
  64. Tikhonov, A. and Arsenin, V., 1977. Solutions of Ill-posed Problems. Scripta Series in
  65. Mathematics. V.H. Winston, Maryland.
  66. Ulrych, T.J. and Sacchi, M.D., 2005. Information-based Inversion and Processing with
  67. Applications. Elsevier Science Publishers, Amsterdam.
  68. van den Berg, E. and Friedlander, M., 2008. Probing the Pareto frontier for basis pursuit
  69. solutions. SIAM J. Sci. Comput., 31: 890-912.
  70. Velis, D.R., 2003. Estimating the distribution of primary reflection coefficients.
  71. Geophysics, 68: 1417-1422.
  72. Velis, D.R., 2005. Constrained inversion of reflection data using Gibbs' sampling. J.
  73. Seismic Explor., 14,: 31-49.
  74. Velis, D.R., 2008. Stochastic sparse-spike deconvolution. Geophysics, 73: R1-R9.
  75. Walden, A. and J. Hosken, J., 1986. The nature of the non-Gaussianity of primary
  76. reflection coefficients and its significance for deconvolution. Geophys. Prosp., 34:
  77. 1038-1066.
  78. Wang, D. and Gao, J., 2017. Multichannel seismic impedance inversion with anisotropic
  79. total variation regularization. Internat. Geophys. Conf., Qingdao, China, 17-20
  80. April: 500-504.
  81. Wang, Y., Cheng, S., She, B., Li, W., Hu, G., Liu, W. and Wang, X., 2017. Sharp
  82. laterally constrained multitrace impedance inversion based on blocky coordinate
  83. descent. Expanded Abstr., 87th Ann. Internat. SEG Mtg., Houston: 667-671.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing