ARTICLE

Seismic wavefield simulation with irregular surface topography and Graphic Processing Unit (GPU) implementation

XIAOBO LIU1 JINGYI CHEN1* HAIQIANG LAN2 ZHENCONG ZHAO1
Show Less
1 Seismic Anisotropy Group, Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, U.S.A.,
2 Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, P.R. China.,
JSE 2018, 27(5), 445–472;
Submitted: 24 August 2017 | Accepted: 30 July 2018 | Published: 1 October 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liu, X.B., Chen, J.Y., Lan, H.Q. and Zhao, Z.C., 2018. Seismic wavefield simulation with irregular surface topography and Graphic Processing Unit (GPU) implementation. Journal of Seismic Exploration, 27: 445-472. Seismic wavefield simulation in the presence of surface topography provides important information for characterizing seismic wave propagation. Based on the boundary-conforming grid method, we first transform both elastic wave equations in second-order formulation and free surface boundary condition in first order system from Cartesian coordinates to curvilinear coordinates. Then, the convolutional perfectly matched layer (CPML) boundary condition is applied to absorb the outgoing seismic waves at the edges of the truncated model. The test results (e.g, wavefield snapshots and seismograms) show that our numerical algorithms can effectively simulate seismic wave propagation in a model with rough topography, and CPML is more efficient than perfectly matched layer (PML) boundary condition in suppressing artificial reflections. In addition, the finite-difference algorithms on a single Graphic Processing Unit (GPU) are used to accelerate seismic numerical modeling in both elastic isotropic and anisotropic media. Compared with the conventional CPU version, the GPU implementation greatly reduces the computational cost.

Keywords
wavefield simulation
surface topography
finite-difference
convolutional perfectly matched layer
Graphic Processing Unit
GPU
References
  1. Abarbanel, S., Gottlieb, D. and Hesthaven, J.S., 1999. Well-posed perfectly matchedlayers for advective acoustics. J. Computat. Phys., 154: 266-283.
  2. Abdelkhalek, R., Calendra, H., Coulaud, O., Latu, G. and Roman, J., 2009. Fastseismic modeling and reverse time migration on a GPU cluster. The 2009 HighPerform. Comput. Simulat., 6: 36-43.
  3. Aki, K. and Richards, P.G., 2002. Quantitative Seismology. 2nd ed., UniversityScience Books, Sausalito.
  4. Alterman, Z. and Karal, F.C., 1968. Propagation of elastic waves in layered media byfinite difference methods. Bull. Seismol. Soc. Am., 58: 367-398.
  5. Appelé, D. and Peterson, N.A., 2009. A stable finite difference method for theelastic wave equation on complex geometries with free surfaces. Commun.Computat. Phys., 5: 84-107.
  6. Bécache, E., Fauqueux, S. and Joly, P., 2003. Stability of perfectly matched layers,group velocities and anisotropic waves. J. Computat. Phys., 188: 399-433.
  7. Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagneticwaves. J. Computat. Phys., 114: 185-200.
  8. Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. A nonreflecting boundarycondition for discrete acoustic and elastic wave equations. Geophysics, 50:705-708.
  9. Chen, J., Bording, P., Liu, E., Zhang, Z. and Badal, J., 2010. The application of thenearly optimal sponge boundary conditions for seismic wave propagation inporoelastic media. J. Seismic Explor., 19: 1-19.
  10. Collino, F. and Tsogka, C., 2001. Application of the perfectly matched absorbinglayer model to the linear elastodynamic problem in anisotropic heterogeneousmedia. Geophysics, 66: 294-307.
  11. Drossaert F.H. and Giannopoulos, A., 2007. Complex frequency shifted convolution
  12. PML for FDTD modeling of elastic waves. Wave Motion, 44: 593-604.
  13. Galis, M., Moczo, P. and Kristek, J., 2008. A 3-D hybrid finite-difference -finite-element viscoelastic modelling of seismic wave motion. Geophys. J.Internat., 175: 153-184.
  14. Holt, B. and Ernst, D., 2011. Accelerating Geophysics Simulation using CUDA. J.Computat. Sci. Educ., 2: 21-27.
  15. Hvid, S.L., 1994. Three dimensional algebraic grid generation. PhD thesis, TechnicalUniversity of Denmark, Lyngby.
  16. Ilan, A., Ungar, A. and Alterman, Z.S., 1975. An improved representation ofboundary conditions in finite difference schemes for seismological problems.Geophys. J. Roy. Astronom. Soc., 43: 727-745.
  17. Ilan, A., 1978. Stability of finite difference schemes for the problem of elastic wavepropagation in a quarter plane. J. Computat. Phys., 29: 389-403.
  18. Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method forthree-dimensional seismic wave propagation. Geophys. J. Internat., 139:806-822.
  19. Komatitsch, D. and Tromp, J., 2003. A perfectly matched layer absorbing boundarycondition for the second-order seismic wave equation. Geophys. J. Internat., 154:146-153.
  20. Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matchedlayer improved at grazing incidence for the seismic wave equation. Geophysics,72: 155-167.
  21. Kuzuoglu, M. and Mittra, R., 1996. Frequency dependence of the constitutiveparameters of causal perfectly matched anisotropic absorbers. IEEE, 6: 447-449.
  22. Lan, H., Liu, J. and Bai, Z., 2011. Wave-field simulation in VTI media with irregularfree surface. Chin. J. Geophys., 54: 2072-2084.
  23. Lan, H. and Zhang, Z., 2011. Three-dimensional wave-field simulation in
  24. Heterogeneous transversely isotropic media with irregular free surface. Bull.Seismol. Soc. Am., 101: 1354-1370.
  25. Lan, H., Chen, J., Zhang, Z., Liu, Y., Zhao, J. and Shi, R., 2016. Application of theperfectly matched layer in seismic wavefield simulation with an irregular freesurface. Geophys. Prosp., 64: 112-128.doi: 10.1111/1365-2478.12260.
  26. Li, Y. and Matar, O.B., 2010. Convolutional perfectly matched layer for elasticsecond-order wave equation. J. Acoust. Soc. Am., 127: 1318-1327.
  27. Liu, H., Li, B., Liu, H., Tong, X., Liu, Q. and Wang, X., 2012. The issues of pre-stackreverse time migration and solutions with Graphic Processing Unitimplementation. Geophys. Prosp., 60: 906-918.
  28. Liu, L., Ding, R., Liu, H. and Liu, H., 2015. 3D hybrid-domain full waveforminversion on GPU. Comput. Geosci., 83: 27-36.
  29. Lisitsa, V., Tcheverda, V. and Botter, C., 2016. Combination of the discontinuous
  30. Galerkin method with finite differences for simulation of seismic wavepropagation. J. Computat. Phys., 311: 142-157.
  31. Martin, R., Komatischa, D. and Ezziani, A., 2008. An unsplit convolutional perfectlymatched layer improved at grazing incidence for the seismic wave equation inporoelastic media. Geophysics, 73; 51-61.
  32. Martin, R. and Komatitsch, D., 2009. An unsplit convolutional perfectly matchedlayer technique improved at grazing incidence for the viscoelastic wave equation.Geophys. J. Internat., 179: 333-344.
  33. Matar, O.B., Preobrazhensky, V. and Pernod, P., 2005. Two-dimensionalaxi-symmetric numerical simulation of supercritical phase conjugation ofultrasound in active solid media. J. Acoust. Soc. Am., 118: 2880-2890.
  34. Meza-Fajardo, K. and Papageorgiou A., 2008. A nonconvolutional, split-field,perfectly matched layer for wave propagation in isotropic and anisotropic elasticmedia: Stability analysis. Bull. Seismol. Soc. Am., 98: 1811-1836.
  35. Michéa, D. and Komatitsch, D., 2010. Accelerating a 3D finite difference wavepropagation code using GPU graphic cards. Geophysics Journal International,182, 389-402.
  36. Micikevicius, P., 2009. 3D finite difference computation on GPUs using CUDA. Proc.2nd Workshop General Purpose Processing Graphics Processing Units: 79-84.
  37. Nielsen, P., If, F., Berg, P. and Skovgaard, O., 1994. Using the pseudo-spectraltechnique on curved grids for 2D acoustic forward modeling. Geophys. Prosp.,42: 321-342.
  38. Nilsson, S., Petersson, N.A., Sjogreen, B. and Kreiss, H.O., 2007. Stable differenceapproximations for the elastic wave equation in second order formulation. SIAMJ. Numer. Analys., 45: 1902-1936.
  39. Panetta, J., Teixeira, T., de Souza Filho, P.R., da Cunha Finho, C.A., Sotelo, D., da
  40. Motta, F.M.R., Pinheiro, S.S., Junior, I.P., Rosa, A.L.R., Monnerat, L.R. and
  41. Carneiro, L.T., 2009. Accelerating Kirchhoff migration by CPU and GPUcooperation. 21st Symp. Computer Architecture and High PerformanceComputing, Sao Paulo: 26-32.
  42. Preis, T., 2011. GPU-computing in econophysics and statistical physics. EuropeanPhysical Journal Special Topics, 194: 87-119.
  43. Roden, J.A. and Gedney, S.D., 2000. Convolutional PML(C-PML): An efficient
  44. FDTD implementation of the CFS-PML for arbitrary media. Microw. Optic.Technol. Lett., 27: 334-339.
  45. Shin, J., Ha, W., Jun, H., Min, D.J. and Shin, C., 2014. 3D Laplace-domain fullwaveform inversion using a single GPU card. Comput. Geosci., 67: 1-13.
  46. Sofronov, L, Zaitsev, N. and Dovgilovich, L., 2015. Multi-block finite- differencemethod for 3D elastodynamic simulations in anisotropic subhorizontally layeredmedia. Geophys. Prosp., 63: 1142-1160.
  47. Tarrass, I., Giraud, L. and Thore, P., 2011. New Curvilinear scheme for elastic wavepropagation in presence of curved topography. Geophys. Prosp., 59: 889-906.
  48. Tessmer, E., Kosloff, D. and Behle, A., 1992. Elastic wave propagation simulation inthe presence of surface topography. Geophys. J. Internat., 108: 621-632.
  49. Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W., 1985. Numercial Grid Generation
  50. Foundations and Applicatioins. North Holland Publishing Company, NewYork.
  51. Vidale, J. and Clayton, R., 1986. A stable free-surface boundary condition fortwo-dimensional elastic finite -difference wave simulation. Geophysics, 51:2247-2249.
  52. Yang, P., Gao, J. and Wang, B., 2015. A graphics processing unit implementation oftime-domain full-waveform inversion. Geophysics, 80(3): F31-F39.
  53. Zeng, C., Xia, J., Miller, R.D. and Tsoflias, G.P., 2011. Application of the multiaxialperfectly matched layer (M-PML) to near-surface seismic modeling withRayleigh waves. Geophysics, 76: 43-52.
  54. Zhang, J.H., Wang, S.Q. and Yao, Z.X., 2009. Accelerating 3D Fourier migrationwith Graphics Processing Units. Geophysics, 74: 129-139.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing