ARTICLE

Seismic wavefield simulation with irregular surface topography and Graphic Processing Unit (GPU) implementation

XIAOBO LIU1 JINGYI CHEN1* HAIQIANG LAN2 ZHENCONG ZHAO1
Show Less
1 Seismic Anisotropy Group, Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, U.S.A.,
2 Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, P.R. China.,
JSE 2018, 27(5), 445–472;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liu, X.B., Chen, J.Y., Lan, H.Q. and Zhao, Z.C., 2018. Seismic wavefield simulation with irregular surface topography and Graphic Processing Unit (GPU) implementation. Journal of Seismic Exploration, 27: 445-472. Seismic wavefield simulation in the presence of surface topography provides important information for characterizing seismic wave propagation. Based on the boundary-conforming grid method, we first transform both elastic wave equations in second-order formulation and free surface boundary condition in first order system from Cartesian coordinates to curvilinear coordinates. Then, the convolutional perfectly matched layer (CPML) boundary condition is applied to absorb the outgoing seismic waves at the edges of the truncated model. The test results (e.g, wavefield snapshots and seismograms) show that our numerical algorithms can effectively simulate seismic wave propagation in a model with rough topography, and CPML is more efficient than perfectly matched layer (PML) boundary condition in suppressing artificial reflections. In addition, the finite-difference algorithms on a single Graphic Processing Unit (GPU) are used to accelerate seismic numerical modeling in both elastic isotropic and anisotropic media. Compared with the conventional CPU version, the GPU implementation greatly reduces the computational cost.

Keywords
wavefield simulation
surface topography
finite-difference
convolutional perfectly matched layer
Graphic Processing Unit
GPU
References
  1. Abarbanel, S., Gottlieb, D. and Hesthaven, J.S., 1999. Well-posed perfectly matched
  2. layers for advective acoustics. J. Computat. Phys., 154: 266-283.
  3. Abdelkhalek, R., Calendra, H., Coulaud, O., Latu, G. and Roman, J., 2009. Fast
  4. seismic modeling and reverse time migration on a GPU cluster. The 2009 High
  5. Perform. Comput. Simulat., 6: 36-43.
  6. Aki, K. and Richards, P.G., 2002. Quantitative Seismology. 2nd ed., University
  7. Science Books, Sausalito.
  8. Alterman, Z. and Karal, F.C., 1968. Propagation of elastic waves in layered media by
  9. finite difference methods. Bull. Seismol. Soc. Am., 58: 367-398.
  10. Appelé, D. and Peterson, N.A., 2009. A stable finite difference method for the
  11. elastic wave equation on complex geometries with free surfaces. Commun.
  12. Computat. Phys., 5: 84-107.
  13. Bécache, E., Fauqueux, S. and Joly, P., 2003. Stability of perfectly matched layers,
  14. group velocities and anisotropic waves. J. Computat. Phys., 188: 399-433.
  15. Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic
  16. waves. J. Computat. Phys., 114: 185-200.
  17. Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. A nonreflecting boundary
  18. condition for discrete acoustic and elastic wave equations. Geophysics, 50:
  19. 705-708.
  20. Chen, J., Bording, P., Liu, E., Zhang, Z. and Badal, J., 2010. The application of the
  21. nearly optimal sponge boundary conditions for seismic wave propagation in
  22. poroelastic media. J. Seismic Explor., 19: 1-19.
  23. Collino, F. and Tsogka, C., 2001. Application of the perfectly matched absorbing
  24. layer model to the linear elastodynamic problem in anisotropic heterogeneous
  25. media. Geophysics, 66: 294-307.
  26. Drossaert F.H. and Giannopoulos, A., 2007. Complex frequency shifted convolution
  27. PML for FDTD modeling of elastic waves. Wave Motion, 44: 593-604.
  28. Galis, M., Moczo, P. and Kristek, J., 2008. A 3-D hybrid finite-difference -
  29. finite-element viscoelastic modelling of seismic wave motion. Geophys. J.
  30. Internat., 175: 153-184.
  31. Holt, B. and Ernst, D., 2011. Accelerating Geophysics Simulation using CUDA. J.
  32. Computat. Sci. Educ., 2: 21-27.
  33. Hvid, S.L., 1994. Three dimensional algebraic grid generation. PhD thesis, Technical
  34. University of Denmark, Lyngby.
  35. Ilan, A., Ungar, A. and Alterman, Z.S., 1975. An improved representation of
  36. boundary conditions in finite difference schemes for seismological problems.
  37. Geophys. J. Roy. Astronom. Soc., 43: 727-745.
  38. Ilan, A., 1978. Stability of finite difference schemes for the problem of elastic wave
  39. propagation in a quarter plane. J. Computat. Phys., 29: 389-403.
  40. Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for
  41. three-dimensional seismic wave propagation. Geophys. J. Internat., 139:
  42. 806-822.
  43. Komatitsch, D. and Tromp, J., 2003. A perfectly matched layer absorbing boundary
  44. condition for the second-order seismic wave equation. Geophys. J. Internat., 154:
  45. 146-153.
  46. Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched
  47. layer improved at grazing incidence for the seismic wave equation. Geophysics,
  48. 72: 155-167.
  49. Kuzuoglu, M. and Mittra, R., 1996. Frequency dependence of the constitutive
  50. parameters of causal perfectly matched anisotropic absorbers. IEEE, 6: 447-449.
  51. Lan, H., Liu, J. and Bai, Z., 2011. Wave-field simulation in VTI media with irregular
  52. free surface. Chin. J. Geophys., 54: 2072-2084.
  53. Lan, H. and Zhang, Z., 2011. Three-dimensional wave-field simulation in
  54. Heterogeneous transversely isotropic media with irregular free surface. Bull.
  55. Seismol. Soc. Am., 101: 1354-1370.
  56. Lan, H., Chen, J., Zhang, Z., Liu, Y., Zhao, J. and Shi, R., 2016. Application of the
  57. perfectly matched layer in seismic wavefield simulation with an irregular free
  58. surface. Geophys. Prosp., 64: 112-128.
  59. doi: 10.1111/1365-2478.12260.
  60. Li, Y. and Matar, O.B., 2010. Convolutional perfectly matched layer for elastic
  61. second-order wave equation. J. Acoust. Soc. Am., 127: 1318-1327.
  62. Liu, H., Li, B., Liu, H., Tong, X., Liu, Q. and Wang, X., 2012. The issues of pre-stack
  63. reverse time migration and solutions with Graphic Processing Unit
  64. implementation. Geophys. Prosp., 60: 906-918.
  65. Liu, L., Ding, R., Liu, H. and Liu, H., 2015. 3D hybrid-domain full waveform
  66. inversion on GPU. Comput. Geosci., 83: 27-36.
  67. Lisitsa, V., Tcheverda, V. and Botter, C., 2016. Combination of the discontinuous
  68. Galerkin method with finite differences for simulation of seismic wave
  69. propagation. J. Computat. Phys., 311: 142-157.
  70. Martin, R., Komatischa, D. and Ezziani, A., 2008. An unsplit convolutional perfectly
  71. matched layer improved at grazing incidence for the seismic wave equation in
  72. poroelastic media. Geophysics, 73; 51-61.
  73. Martin, R. and Komatitsch, D., 2009. An unsplit convolutional perfectly matched
  74. layer technique improved at grazing incidence for the viscoelastic wave equation.
  75. Geophys. J. Internat., 179: 333-344.
  76. Matar, O.B., Preobrazhensky, V. and Pernod, P., 2005. Two-dimensional
  77. axi-symmetric numerical simulation of supercritical phase conjugation of
  78. ultrasound in active solid media. J. Acoust. Soc. Am., 118: 2880-2890.
  79. Meza-Fajardo, K. and Papageorgiou A., 2008. A nonconvolutional, split-field,
  80. perfectly matched layer for wave propagation in isotropic and anisotropic elastic
  81. media: Stability analysis. Bull. Seismol. Soc. Am., 98: 1811-1836.
  82. Michéa, D. and Komatitsch, D., 2010. Accelerating a 3D finite difference wave
  83. propagation code using GPU graphic cards. Geophysics Journal International,
  84. 182, 389-402.
  85. Micikevicius, P., 2009. 3D finite difference computation on GPUs using CUDA. Proc.
  86. 2nd Workshop General Purpose Processing Graphics Processing Units: 79-84.
  87. Nielsen, P., If, F., Berg, P. and Skovgaard, O., 1994. Using the pseudo-spectral
  88. technique on curved grids for 2D acoustic forward modeling. Geophys. Prosp.,
  89. 42: 321-342.
  90. Nilsson, S., Petersson, N.A., Sjogreen, B. and Kreiss, H.O., 2007. Stable difference
  91. approximations for the elastic wave equation in second order formulation. SIAM
  92. J. Numer. Analys., 45: 1902-1936.
  93. Panetta, J., Teixeira, T., de Souza Filho, P.R., da Cunha Finho, C.A., Sotelo, D., da
  94. Motta, F.M.R., Pinheiro, S.S., Junior, I.P., Rosa, A.L.R., Monnerat, L.R. and
  95. Carneiro, L.T., 2009. Accelerating Kirchhoff migration by CPU and GPU
  96. cooperation. 21st Symp. Computer Architecture and High Performance
  97. Computing, Sao Paulo: 26-32.
  98. Preis, T., 2011. GPU-computing in econophysics and statistical physics. European
  99. Physical Journal Special Topics, 194: 87-119.
  100. Roden, J.A. and Gedney, S.D., 2000. Convolutional PML(C-PML): An efficient
  101. FDTD implementation of the CFS-PML for arbitrary media. Microw. Optic.
  102. Technol. Lett., 27: 334-339.
  103. Shin, J., Ha, W., Jun, H., Min, D.J. and Shin, C., 2014. 3D Laplace-domain full
  104. waveform inversion using a single GPU card. Comput. Geosci., 67: 1-13.
  105. Sofronov, L, Zaitsev, N. and Dovgilovich, L., 2015. Multi-block finite- difference
  106. method for 3D elastodynamic simulations in anisotropic subhorizontally layered
  107. media. Geophys. Prosp., 63: 1142-1160.
  108. Tarrass, I., Giraud, L. and Thore, P., 2011. New Curvilinear scheme for elastic wave
  109. propagation in presence of curved topography. Geophys. Prosp., 59: 889-906.
  110. Tessmer, E., Kosloff, D. and Behle, A., 1992. Elastic wave propagation simulation in
  111. the presence of surface topography. Geophys. J. Internat., 108: 621-632.
  112. Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W., 1985. Numercial Grid Generation
  113. Foundations and Applicatioins. North Holland Publishing Company, New
  114. York.
  115. Vidale, J. and Clayton, R., 1986. A stable free-surface boundary condition for
  116. two-dimensional elastic finite -difference wave simulation. Geophysics, 51:
  117. 2247-2249.
  118. Yang, P., Gao, J. and Wang, B., 2015. A graphics processing unit implementation of
  119. time-domain full-waveform inversion. Geophysics, 80(3): F31-F39.
  120. Zeng, C., Xia, J., Miller, R.D. and Tsoflias, G.P., 2011. Application of the multiaxial
  121. perfectly matched layer (M-PML) to near-surface seismic modeling with
  122. Rayleigh waves. Geophysics, 76: 43-52.
  123. Zhang, J.H., Wang, S.Q. and Yao, Z.X., 2009. Accelerating 3D Fourier migration
  124. with Graphics Processing Units. Geophysics, 74: 129-139.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing