Seismic wavefield simulation with irregular surface topography and Graphic Processing Unit (GPU) implementation

Liu, X.B., Chen, J.Y., Lan, H.Q. and Zhao, Z.C., 2018. Seismic wavefield simulation with irregular surface topography and Graphic Processing Unit (GPU) implementation. Journal of Seismic Exploration, 27: 445-472. Seismic wavefield simulation in the presence of surface topography provides important information for characterizing seismic wave propagation. Based on the boundary-conforming grid method, we first transform both elastic wave equations in second-order formulation and free surface boundary condition in first order system from Cartesian coordinates to curvilinear coordinates. Then, the convolutional perfectly matched layer (CPML) boundary condition is applied to absorb the outgoing seismic waves at the edges of the truncated model. The test results (e.g, wavefield snapshots and seismograms) show that our numerical algorithms can effectively simulate seismic wave propagation in a model with rough topography, and CPML is more efficient than perfectly matched layer (PML) boundary condition in suppressing artificial reflections. In addition, the finite-difference algorithms on a single Graphic Processing Unit (GPU) are used to accelerate seismic numerical modeling in both elastic isotropic and anisotropic media. Compared with the conventional CPU version, the GPU implementation greatly reduces the computational cost.
- Abarbanel, S., Gottlieb, D. and Hesthaven, J.S., 1999. Well-posed perfectly matched
- layers for advective acoustics. J. Computat. Phys., 154: 266-283.
- Abdelkhalek, R., Calendra, H., Coulaud, O., Latu, G. and Roman, J., 2009. Fast
- seismic modeling and reverse time migration on a GPU cluster. The 2009 High
- Perform. Comput. Simulat., 6: 36-43.
- Aki, K. and Richards, P.G., 2002. Quantitative Seismology. 2nd ed., University
- Science Books, Sausalito.
- Alterman, Z. and Karal, F.C., 1968. Propagation of elastic waves in layered media by
- finite difference methods. Bull. Seismol. Soc. Am., 58: 367-398.
- Appelé, D. and Peterson, N.A., 2009. A stable finite difference method for the
- elastic wave equation on complex geometries with free surfaces. Commun.
- Computat. Phys., 5: 84-107.
- Bécache, E., Fauqueux, S. and Joly, P., 2003. Stability of perfectly matched layers,
- group velocities and anisotropic waves. J. Computat. Phys., 188: 399-433.
- Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic
- waves. J. Computat. Phys., 114: 185-200.
- Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. A nonreflecting boundary
- condition for discrete acoustic and elastic wave equations. Geophysics, 50:
- 705-708.
- Chen, J., Bording, P., Liu, E., Zhang, Z. and Badal, J., 2010. The application of the
- nearly optimal sponge boundary conditions for seismic wave propagation in
- poroelastic media. J. Seismic Explor., 19: 1-19.
- Collino, F. and Tsogka, C., 2001. Application of the perfectly matched absorbing
- layer model to the linear elastodynamic problem in anisotropic heterogeneous
- media. Geophysics, 66: 294-307.
- Drossaert F.H. and Giannopoulos, A., 2007. Complex frequency shifted convolution
- PML for FDTD modeling of elastic waves. Wave Motion, 44: 593-604.
- Galis, M., Moczo, P. and Kristek, J., 2008. A 3-D hybrid finite-difference -
- finite-element viscoelastic modelling of seismic wave motion. Geophys. J.
- Internat., 175: 153-184.
- Holt, B. and Ernst, D., 2011. Accelerating Geophysics Simulation using CUDA. J.
- Computat. Sci. Educ., 2: 21-27.
- Hvid, S.L., 1994. Three dimensional algebraic grid generation. PhD thesis, Technical
- University of Denmark, Lyngby.
- Ilan, A., Ungar, A. and Alterman, Z.S., 1975. An improved representation of
- boundary conditions in finite difference schemes for seismological problems.
- Geophys. J. Roy. Astronom. Soc., 43: 727-745.
- Ilan, A., 1978. Stability of finite difference schemes for the problem of elastic wave
- propagation in a quarter plane. J. Computat. Phys., 29: 389-403.
- Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for
- three-dimensional seismic wave propagation. Geophys. J. Internat., 139:
- 806-822.
- Komatitsch, D. and Tromp, J., 2003. A perfectly matched layer absorbing boundary
- condition for the second-order seismic wave equation. Geophys. J. Internat., 154:
- 146-153.
- Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched
- layer improved at grazing incidence for the seismic wave equation. Geophysics,
- 72: 155-167.
- Kuzuoglu, M. and Mittra, R., 1996. Frequency dependence of the constitutive
- parameters of causal perfectly matched anisotropic absorbers. IEEE, 6: 447-449.
- Lan, H., Liu, J. and Bai, Z., 2011. Wave-field simulation in VTI media with irregular
- free surface. Chin. J. Geophys., 54: 2072-2084.
- Lan, H. and Zhang, Z., 2011. Three-dimensional wave-field simulation in
- Heterogeneous transversely isotropic media with irregular free surface. Bull.
- Seismol. Soc. Am., 101: 1354-1370.
- Lan, H., Chen, J., Zhang, Z., Liu, Y., Zhao, J. and Shi, R., 2016. Application of the
- perfectly matched layer in seismic wavefield simulation with an irregular free
- surface. Geophys. Prosp., 64: 112-128.
- doi: 10.1111/1365-2478.12260.
- Li, Y. and Matar, O.B., 2010. Convolutional perfectly matched layer for elastic
- second-order wave equation. J. Acoust. Soc. Am., 127: 1318-1327.
- Liu, H., Li, B., Liu, H., Tong, X., Liu, Q. and Wang, X., 2012. The issues of pre-stack
- reverse time migration and solutions with Graphic Processing Unit
- implementation. Geophys. Prosp., 60: 906-918.
- Liu, L., Ding, R., Liu, H. and Liu, H., 2015. 3D hybrid-domain full waveform
- inversion on GPU. Comput. Geosci., 83: 27-36.
- Lisitsa, V., Tcheverda, V. and Botter, C., 2016. Combination of the discontinuous
- Galerkin method with finite differences for simulation of seismic wave
- propagation. J. Computat. Phys., 311: 142-157.
- Martin, R., Komatischa, D. and Ezziani, A., 2008. An unsplit convolutional perfectly
- matched layer improved at grazing incidence for the seismic wave equation in
- poroelastic media. Geophysics, 73; 51-61.
- Martin, R. and Komatitsch, D., 2009. An unsplit convolutional perfectly matched
- layer technique improved at grazing incidence for the viscoelastic wave equation.
- Geophys. J. Internat., 179: 333-344.
- Matar, O.B., Preobrazhensky, V. and Pernod, P., 2005. Two-dimensional
- axi-symmetric numerical simulation of supercritical phase conjugation of
- ultrasound in active solid media. J. Acoust. Soc. Am., 118: 2880-2890.
- Meza-Fajardo, K. and Papageorgiou A., 2008. A nonconvolutional, split-field,
- perfectly matched layer for wave propagation in isotropic and anisotropic elastic
- media: Stability analysis. Bull. Seismol. Soc. Am., 98: 1811-1836.
- Michéa, D. and Komatitsch, D., 2010. Accelerating a 3D finite difference wave
- propagation code using GPU graphic cards. Geophysics Journal International,
- 182, 389-402.
- Micikevicius, P., 2009. 3D finite difference computation on GPUs using CUDA. Proc.
- 2nd Workshop General Purpose Processing Graphics Processing Units: 79-84.
- Nielsen, P., If, F., Berg, P. and Skovgaard, O., 1994. Using the pseudo-spectral
- technique on curved grids for 2D acoustic forward modeling. Geophys. Prosp.,
- 42: 321-342.
- Nilsson, S., Petersson, N.A., Sjogreen, B. and Kreiss, H.O., 2007. Stable difference
- approximations for the elastic wave equation in second order formulation. SIAM
- J. Numer. Analys., 45: 1902-1936.
- Panetta, J., Teixeira, T., de Souza Filho, P.R., da Cunha Finho, C.A., Sotelo, D., da
- Motta, F.M.R., Pinheiro, S.S., Junior, I.P., Rosa, A.L.R., Monnerat, L.R. and
- Carneiro, L.T., 2009. Accelerating Kirchhoff migration by CPU and GPU
- cooperation. 21st Symp. Computer Architecture and High Performance
- Computing, Sao Paulo: 26-32.
- Preis, T., 2011. GPU-computing in econophysics and statistical physics. European
- Physical Journal Special Topics, 194: 87-119.
- Roden, J.A. and Gedney, S.D., 2000. Convolutional PML(C-PML): An efficient
- FDTD implementation of the CFS-PML for arbitrary media. Microw. Optic.
- Technol. Lett., 27: 334-339.
- Shin, J., Ha, W., Jun, H., Min, D.J. and Shin, C., 2014. 3D Laplace-domain full
- waveform inversion using a single GPU card. Comput. Geosci., 67: 1-13.
- Sofronov, L, Zaitsev, N. and Dovgilovich, L., 2015. Multi-block finite- difference
- method for 3D elastodynamic simulations in anisotropic subhorizontally layered
- media. Geophys. Prosp., 63: 1142-1160.
- Tarrass, I., Giraud, L. and Thore, P., 2011. New Curvilinear scheme for elastic wave
- propagation in presence of curved topography. Geophys. Prosp., 59: 889-906.
- Tessmer, E., Kosloff, D. and Behle, A., 1992. Elastic wave propagation simulation in
- the presence of surface topography. Geophys. J. Internat., 108: 621-632.
- Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W., 1985. Numercial Grid Generation
- Foundations and Applicatioins. North Holland Publishing Company, New
- York.
- Vidale, J. and Clayton, R., 1986. A stable free-surface boundary condition for
- two-dimensional elastic finite -difference wave simulation. Geophysics, 51:
- 2247-2249.
- Yang, P., Gao, J. and Wang, B., 2015. A graphics processing unit implementation of
- time-domain full-waveform inversion. Geophysics, 80(3): F31-F39.
- Zeng, C., Xia, J., Miller, R.D. and Tsoflias, G.P., 2011. Application of the multiaxial
- perfectly matched layer (M-PML) to near-surface seismic modeling with
- Rayleigh waves. Geophysics, 76: 43-52.
- Zhang, J.H., Wang, S.Q. and Yao, Z.X., 2009. Accelerating 3D Fourier migration
- with Graphics Processing Units. Geophysics, 74: 129-139.