ARTICLE

Decomposition of a Laplacian filter operator for reverse time migration

XIN TIAN1 SAMAN AZADBAKHT2 CHIYUAN REN3
Show Less
1 Engineering College, Southwest Petroleum University, Chengdu 610500, P.R. China. tianxinjxs@163.com,
2 Petroleum Systems Engineering, University of Regina, SK, Canada S4S 0A2.,
3 Science College, Southwest Petroleum University, Chengdu 610500, P.R. China.,
JSE 2018, 27(4), 1–22;
Submitted: 24 April 2017 | Accepted: 15 May 2018 | Published: 1 August 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Tian, X., Azadbakht, S. and Ren, C.Y., 2018. Decomposition of the Laplacian filter operator for reverse time migration. Journal of Seismic Exploration, 27: 349-370. Reverse time migration is considered as an effective approach to obtain the images of layers, but it usually produces some artifacts in the images. Applying a Laplacian filter is a conventional and effective approach to improve these images. In this work, the Laplacian operator is decomposed mathematically. Based on this decomposition, the reason why the Laplacian filter can improve images is investigated thoroughly, and the work part is identified. Then we discard the useless part and employ the work part to form a new imaging condition. At first, shown in a one-shot numerical experiment, the proposed imaging condition can simultaneously remove the low-and high-frequency artifacts effectively. Then, the Sigsbee2A velocity model is employed as a synthetic example to verify the proposed imaging condition. The numerical results show that the proposed imaging condition can effectively govern the principal energy in wave fields and damp artifacts in angle domain.

Keywords
reverse time migration
imaging condition
Laplacian operator
artifact removal
References
  1. Baysal, E., Kosloff, D.D. and Sherwood, J.W.C., 1983. Reverse time migration.Geophysics, 48, 1514-1524.
  2. Baysal, E., Kosloff, D.D. and Sherwood, J.W.C., 1984. A two-way nonreflecting waveequation: Geophysics, 49, 132-141.
  3. Chattopadhyay, S. and McMechan, G.A., 2008. Imaging conditions for prestack reverse-time migration. Geophysics, 73(3): 81-89.
  4. Claerbout, J.F., 1971. Toward a unified theory of reflector mapping: Geophysics, 36,467-481.
  5. Claerbout, J.F., 1985. Imaging the Earth’s Interior. Blackwell Science Inc., Oxford.
  6. Claerbout, J.F., 1998. Multidimensional recursive filters via a helix. Geophysics, 63:1532-1541.
  7. Costa, J.C., Silva, F.A., Alcantara, M.R., Schleicher, J. and Novais, A., 2009. Obliquity-correction imaging condition for reverse time migration. Geophysics, 74(3): S57-S66.
  8. Diaz, E. and Sava, P., 2012. Understanding the reverse time migration backscattering:
  9. Noise or signal? Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas:111-123.
  10. Fei, T.W., Luo, Y. and Schuster, G.T., 2010. De-blending reverse-time migration.
  11. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 3130-3134.
  12. Feng, L.L, Yang, D.H. and Xie, W., 2015. An efficient symplectic reverse time migrationmethod using a local nearly analytic discrete operator in acoustic transverselyisotropic media with a vertical symmetry axis. Geophysics, 80: 3-S112.
  13. Fletcher, R.F., Fowler, P., Kitchenside, P. and Albertin, U., 2005. Suppressing unwantedinternal reflections in prestack reverse-time migration. Geophysics, 71(6): E79-E82.
  14. Guitton, A., Kaelin, B. and Biondi, B., 2007. Least-square attenuation of reverse timemigration artifacts. Geophysics, 72: 19-23.
  15. Guitton, A., Valenciano, A., Seve, D. and Clearbout J., 2007. Smoothing imagingcondition for shot-profile migration. Geophysics, 72: 149-154.
  16. Haney, M.M., Bartel, L.C., Aldridge, D.F. and Symons, N.P., 2005. Insight into theoutput of reverse-time migration. What do amplitudes mean? Expanded Abstr.,75th Ann. Internat. SEG Mtg., Houston: 1950-1953.
  17. Kaelin, B. and Guitton, A., 2006. Imaging condition for reverse time migration.
  18. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 2594-2598.
  19. Li, J.S., Yang, D.H. and Liu, F.Q., 2013. An efficient reverse-time migration methodusing local nearly analytic discrete operator. Geophysics, 78(1): S15-S23.
  20. Liu, F., Zhang, G.Q., Morton, S.A. and Leveille, J.P., 2008. An anti-dispersion waveequation for modeling and reverse time migration. Expanded Abstr., 78th Ann.Internat. SEG Mtg., Las Vegas: 277-2281.
  21. Liu, F., Zhang, G.Q., Morton, S.A. and Leveille, J.P., 2007. Reverse time migrationusing one-way wavefield imaging condition. Expanded Abstr., 77th Ann. Internat.SEG Mtg., San Antonio, 36: 2170-2174.
  22. VOL27-4_August 2018_Mise en page 1 16/07/2018 09:52 Rgges69
  23. Liu, F., Zhang, G.Q., Morton, S.A. and Leveille, J.P., 2011. An effective imagingcondition for reverse-time migration using wavefield decomposition. Geophysics,76: 29-39.
  24. Loewenthal, D., Stoffa, P.L. and Faria, E.L., 1987. Suppressing the unwanted reflectionsof the full wave equation. Geophysics, 52: 1007-1012.
  25. McMechan, G.G., 1983. Migration by extrapolation of time-dependent boundary values.Geophys. Prosp., 31: 413-420.
  26. Mulder, W.A. and Plessix, R.E., 2003. One-way and two-way wave equation migration.
  27. Expanded Abstr., 80th Ann. Internat. SEG Mtg., 73rd Ann. Internat. SEG Mtg.,Dallas: 881-884.
  28. Paffenholz, J., McLain, B., Zaske, J. and Keliher, P., 2002. Subsalt multiple attenuationand imaging: Observations from the Sigsbee synthetic data set. Expanded Abstr.,72nd Ann. Internat. SEG Mtg., Salt Lake city: 2122-2125.
  29. Pratt, W.K., 1978,. Digital Image Processing. Wiley Interscience., New York.
  30. Ren, C.Y., Song, G.J. and Tian, X., 2015. The use of Poynting vector in wave-fielddecomposition imaging condition for reverse-time migration. J. Appl. Geophys.,112: 14-19.
  31. Reuter, M., Biasotti, S., Giorgi, D., Patané, G. and Spagnuolo, M., 2009. Discrete
  32. Laplace—Beltrami operators for shape analysis and segmentation. Comput.Graph., 33: 381-390.
  33. Sava, P. and Fomel, S., 2006. Time-shift imaging condition in seismic migration.Geophysics, 71: 209-217.
  34. Sava, P. and Vasconcelos, I., 2011. Extended imaging conditions for wave-equationmigration. Geophys. Prosp., 59: 35-55.
  35. Schuster, G.T. and Dai, W., 2010. Multi-source wave equation least-squares migrationwith a deblurring filter. Extended Abstr., 72nd EAGE Conf., Barcelona.
  36. Suh, S.Y. and Cai, J., 2009. Reverse-time migration by fan filtering plus wave-fielddecomposition. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 2804-
  37. Whitmore, N.D., 1983. Iterative depth migration by backward time propagation.
  38. Expanded Abstr., 53rd Ann. Internat. SEG Mtg. Las Vegas: 382-385.
  39. Xie, W., Yang, D.H., Liu, F.Q. and Li, J.S., 2014. Reverse-time migration in acoustic
  40. VTI media using a high-order stereo operator. Geophysics, 79: WA3-WA11.
  41. Yoon, K. and Marfurt, K.J., 2006. Reverse-time migration using the pointing vector.Explor. Geophys., 37: 102-107.
  42. Youn, O. and Zhou, H.W., 2001. Depth imaging with multiples. Geophysics, 66: 246-
  43. Yan, R. and Xie, X.B., 2009. A new angle-domain imaging condition for prestackreverse-time migration. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston:2784-2789.
  44. Zhang, Y., Sheng, X., Bleistein, N. and Zhang, G., 2007. True amplitude, angledomain, common-image gathers from one-way wave equation migrations.Geophysics, 72: 49-58.
  45. Zhang, Y. and Sun, J., 2009. Practical issues in reverse time migration: true amplitudegathers, noise removal and harmonic source encoding. First Break, 27: 53-59.
  46. Zhou, M. and Schuster, G.T., 2002. Wave-equation wavefront migration. Expanded
  47. Abstr., 72nd Ann. Internat. SEG Mtg., Salt Lake City: 1292-1295.
  48. VOL27-4_August 2018_Mise en page 1 16/07/2018 09:52 Rgge370
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing