ARTICLE

Experimental analysis on P-wave attenuation in carbonate rocks and reservoir identification

JING BA1 LIN ZHANG1 DING WANG2 ZHENYU YUAN1 WEI CHENG1 RUPENG MA1 CHUNFANG WU1
Show Less
1 School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, P.R. China.,
2 Center of Rock Mechanics and Geohazards, Shaoxing University, Shaoxing 312000, P.R. China.,
JSE 2018, 27(4), 371–402;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Understanding the relationships between seismic wave responses and rock properties is a key factor for quantitative seismic interpretation and characterization of complex hydrocarbon reservoirs. We have performed laboratory ultrasonic measurements on 10 carbonate samples and recorded the waveforms under different conditions, such as varying pore-fluid types, confining and pore pressures and partial saturations. P- and S-wave velocities are measured on the basis of the first arrivals and the attenuation of P-waves is estimated by use of the spectrum-ratio method on the transmitted signals. The sensitivity analysis based on the experimental results show that P-wave attenuation is one of the most sensitive indicators for rock porosity and permeability, especially for low porosity rocks. P-wave attenuation is then used to identify the high quality carbonate reservoirs from the actual stratum on the basis of the post-stack seismic data. The inverse quality factor Q'' is estimated by using the spectral ratio method based on a generalized S-transform of the post-stack seismic data. The empirical relations between porosity, permeability and P-wave attenuation, which are derived from the experimental measurements, are then applied to the values obtained from seismic profile. We predict the reservoir porosity and permeability from the carbonate stratum. The prediction results are in good agreement with the well log production reports, validating P-wave attenuation as an effective indicator for directly characterizing in-situ carbonate reservoirs.

Keywords
attenuation
experimental measurement
reservoir identification
carbonate
rock physics
saturation
porosity
sensitivity
References
  1. Adam, L., Batzle, M., Lewallen, K. and van Wijk, K., 2009. Seismic wave attenuation in
  2. carbonates. J. Geophys. Res., 114(B6): 258-266.
  3. Agersborg, R., Johansen, T.A., Jakobsen, M., Sothcott, J: and Best, A., 2008. Effects of
  4. fluids and dual-pore systems on pressure-dependent velocities and attenuations in
  5. carbonates. Geophysics, 73(5): N35-N47.
  6. Ba, J., Carcione, J.M., Cao, H., Du, Q., Yuan, Z. and Lu, M., 2012. Velocity dispersion
  7. and attenuation of P-waves in partially-saturated rocks-Wave propagation equations
  8. in double-porosity medium. Chin. J. Geophys. (in Chinese), 55: 219-231.
  9. Ba, J., Du, Q., Carcione, J.M., Zhang, H. and Miiller, T.M., 2015. Seismic Exploration of
  10. Hydrocarbons in Heterogeneous Reservoirs: New Theories, Methods and
  11. Applications. Elsevier Science Publishers, Amsterdam.
  12. Ba, J., Xu, W., Fu, L., Carcione, J.M. and Zhang, L., 2017. Rock anelasticity due to
  13. patchy saturation and fabric heterogeneity: A double double-porosity model of wave
  14. propagation. J. Geophys. Res.-Solid Earth, 122: 1949-1976.
  15. Ba, J., Zhao, J., Carcione, J.M. and Huang, X., 2016. Compressional wave dispersion due
  16. to rock matrix stiffening by clay squirt flow. Geophys, Res. Lett., 43: 6186-6195.
  17. doi:10.1002/2016GL069312.
  18. Baechle, G.T., Colpaert, A., Eberli, G.P. and Weger, R.J., 2008. Effects of microporosity
  19. on sonic velocity in carbonate rocks. Geophysics, 27: 1012-1018.
  20. Baechle, G.T., Weger, R.J., Eberli, G.P., Massaferro, J.L. and Sun, Y., 2005. Changes of
  21. shear moduli in carbonate rocks: Implications for Gassmann applicability. The
  22. Leading Edge, 24: 507-510.
  23. Bouchaala, F., Ali, M.Y. and Farid, A., 2014. Estimation of compressional seismic wave
  24. attenuation of carbonate rocks in Abu Dhabi, United Arab Emirates. Compt. Rend.
  25. Geosci., 346: 169-178.
  26. Cadoret, T., Mavko, G. and Zinszner, B., 1998. Fluid distribution effect on sonic
  27. attenuation in partially saturated limestones. Geophysics. 63: 154-160.
  28. Carcione, J.M., Helle, H.B. and Pham, N.H., 2003. White’s model for wave propagation
  29. in partially saturated rocks. Comparison with poroelastic numerical experiments.
  30. Geophysics, 68: 1389-1398
  31. Carcione, J.M., 2014. Wave Fields in Real Media, Theory and Numerical Simulation of
  32. Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (3rd
  33. ed., extended and revised). Elsevier Science Publishers, Amsterdam.
  34. Carcione, J.M., Picotti, S., Gei, D. and Rossi, G., 2006. Physics and seismic modeling for
  35. monitoring CO2 storage. Pure Appl. Geophys., 163: 175-207.
  36. Chopra, S., Chemingui, N. and Miller, R.D., 2005. An introduction to this special section
  37. - carbonates. The Leading Edge, 24: 488-489.
  38. Dasgupta, R. and Clark, R.A., 1998. Estimation of Q from surface seismic reflection data.
  39. Geophysics, 63: 2120-2128.
  40. Dasios, A.-T., Astin, T.R. and McCann, C., 1998. Increasing confidence in seismic Q
  41. measurements: a comparison of estimates from sonic and surface seismic data.
  42. Expanded Abstr., 68th Ann. Internat. SEG Mtg., New Orleans: 1080-1083.
  43. Eberli, G.P., Baechle, B., Anselmetti, F. and Incze, M., 2003. Factors controlling elastic
  44. properties in carbonate sediments and rocks. The Leading Edge, 22: 654-660.
  45. Guo, M., Fu, L. and Ba, J., 2009. Comparison of stress-associated coda attenuation and
  46. intrinsic attenuation from ultrasonic measurements. Geophys. J. Internat., 178:
  47. 447-456.
  48. Kumar, M. and Han, D., 2005. Pore shape effect on elastic properties of carbonate rocks.
  49. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1477-1480.
  50. Li, H., Zhao, W., Cao, H., Yao F. and Shao, L., 2006. Measures of scale based on the
  51. wavelet scalogram with applications to seismic attenuation. Geophysics, 71(5):
  52. V111-V118.
  53. Liu, J., Ba, J., Ma, J. and Yang, H., 2010. An analysis of seismic attenuation in random
  54. porous media. Sci. Chin. Phys., Mechan. Astron., 53: 628-637.
  55. Lucet, N. and Zinszner, B., 1992. Effects of heterogeneities and anisotropy on sonic and
  56. ultrasonic attenuation in rocks. Geophysics, 57: 1018-1026.
  57. Mahbaz, S.B., Sardar, H. and Memarian, H., 2012. Determination of a rock physics
  58. model for the carbonate Fahliyan Formation in two oil wells in sourthwestern Iran.
  59. Explor. Geophys., 43: 47-57.
  60. Mavko, G.M. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80:
  61. 1444-1448.
  62. Mavko, G.M. and Nur, A., 1979. Wave attenuation in partially saturated rocks.
  63. Geophysics, 44: 161-178.
  64. Nunes, B.I.D.C., Medeiros, W.E.D., Nascimento, A.F.D. and Moreira, J.A.D.M., 2011.
  65. Estimating quality factor from surface seismic data: A comparison of current
  66. approaches. J. Appl. Geophys., 75: 161-170.
  67. Picotti, S. and Carcione, J.M., 2006. Estimating seismic attenuation (Q) in the presence of
  68. random noise. J. Seismic Explor., 15: 165-181.
  69. Prasad, M., Fabricius, I.L. and Olsen, C., 2005. Rock physics and statistical well log
  70. analyses in marly chalk. The Leading Edge, 24: 491-495.
  71. Pride, S.R., Berryman, J.G. and Harris, J.M., 2004. Seismic attenuation due to
  72. wave-induced flow. J. Geophys. Res., 109(B1), B01201.
  73. Quan, Y. and Harris, J.M., 1997. Seismic attenuation tomography using the frequency
  74. shift method. Geophysics, 62: 895-905.
  75. Sahu, S.S., Panda, G. and George, N.V., 2009. An improved S-transform for
  76. time-frequency analysis. Advance Computing Conf., [ACC 2009, Patiala, India.
  77. Sain, R., Chen, G., Xu, S. and Payne, M.A., 2008. Carbonate rock physics: Geophysical
  78. and petrophysical pore types of carbonate rocks from an offshore carbonate field.
  79. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 1655-1699.
  80. Sayers, C.M., 2008. The elastic properties of carbonates. The Leading Edge, 27:
  81. 1020-1024.
  82. Stockwell, R.G., 2007. A basis for efficient representation of the S-transform. Digit. Sign.
  83. Process., 17: 371-393.
  84. Stockwell, R.G., Mansinha, L. and Lowe, R.P., 1996. Localization of the complex
  85. spectrum: the S transform. IEEE Transact. Sign. Process., 44: 998-1001.
  86. Sun, Y., 2004. Seismic signatures of rock pore structure. Appl. Geophys., 1: 42-49.
  87. Sun, Z., Wang, H., Liu, Z., Li, Y., Zhou, X. and Wang, Z., 2012. The theory and
  88. application of DEM-Gassmann rock physics model for complex carbonate reservoirs.
  89. The Leading Edge, 31: 152-158.
  90. Tokséz, M.N., Johnston, D.H. and Timur, A., 1979. Attenuation of seismic waves in dry
  91. and saturated rocks: L. Laboratory measurements. Geophysics, 44: 681-690.
  92. Tonn, R., 1991. The determination of the seismic quality factor Q from VSP data: A
  93. comparison of different computational methods. Geophys. Prosp., 39: 1-27.
  94. Vanorio, T., Scotellaro, C. and Mavko, G., 2008. The effect of chemical and physical
  95. processes on the acoustic properties of carbonate rocks. The Leading Edge, 27:
  96. 1040-1048.
  97. Weger, R.J., Eberli, G.P., Baechle, G.T., Massaferro, J.-L. and Sun, Y.F., 2009.
  98. Quantification of pore structure and its effect on sonic velocity and permeability in
  99. carbonates. AAPG Bull., 93: 1297-1317.
  100. Wang, Y., 2004. Q analysis on reflection seismic data. Geophys. Res. Lett., 31(17):
  101. L17606.
  102. White, J., 1975. Computed seismic speeds and attenuation in rocks with partial gas
  103. saturation. Geophysics, 40: 224-232.
  104. White, R., 1992. The accuracy of estimating Q from seismic data. Geophysics, 57:
  105. 1508-1511.
  106. Winkler, K.W. and Nur, A., 1979. Pore fluids and seismic attenuation in rocks.
  107. Geophys. Res. Lett., 6: 1-4.
  108. Winkler, K.W. and Murphy, W.F. III, 1995. Acoustic velocity and attenuation in porous
  109. rocks. In: Rock Physics and Phase Relations, Vol. 3, AGU: 20-34.
  110. Xu, S. and Payne, M.A., 2009. Modeling elastic properties in carbonate rocks. The
  111. Leading Edge, 28: 66-74.
  112. Xu, S. and White, R.E., 1995. A new velociy model for clay-sand mixtures. Geophys.
  113. Prosp., 43: 91-118.
  114. Zhang, C., 2008. Seismic Absorption Estimation and Compensation. Ph.D. Thesis, The
  115. University of British Columbia, Vancouver.
  116. Zhang, C. and Ulrych, T.J., 2002. Estimation of quality factors from CMP records:
  117. Geophysics, 67: 1542-1547.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing