Experimental analysis on P-wave attenuation in carbonate rocks and reservoir identification

Understanding the relationships between seismic wave responses and rock properties is a key factor for quantitative seismic interpretation and characterization of complex hydrocarbon reservoirs. We have performed laboratory ultrasonic measurements on 10 carbonate samples and recorded the waveforms under different conditions, such as varying pore-fluid types, confining and pore pressures and partial saturations. P- and S-wave velocities are measured on the basis of the first arrivals and the attenuation of P-waves is estimated by use of the spectrum-ratio method on the transmitted signals. The sensitivity analysis based on the experimental results show that P-wave attenuation is one of the most sensitive indicators for rock porosity and permeability, especially for low porosity rocks. P-wave attenuation is then used to identify the high quality carbonate reservoirs from the actual stratum on the basis of the post-stack seismic data. The inverse quality factor Q'' is estimated by using the spectral ratio method based on a generalized S-transform of the post-stack seismic data. The empirical relations between porosity, permeability and P-wave attenuation, which are derived from the experimental measurements, are then applied to the values obtained from seismic profile. We predict the reservoir porosity and permeability from the carbonate stratum. The prediction results are in good agreement with the well log production reports, validating P-wave attenuation as an effective indicator for directly characterizing in-situ carbonate reservoirs.
- Adam, L., Batzle, M., Lewallen, K. and van Wijk, K., 2009. Seismic wave attenuation incarbonates. J. Geophys. Res., 114(B6): 258-266.
- Agersborg, R., Johansen, T.A., Jakobsen, M., Sothcott, J: and Best, A., 2008. Effects offluids and dual-pore systems on pressure-dependent velocities and attenuations incarbonates. Geophysics, 73(5): N35-N47.
- Ba, J., Carcione, J.M., Cao, H., Du, Q., Yuan, Z. and Lu, M., 2012. Velocity dispersionand attenuation of P-waves in partially-saturated rocks-Wave propagation equationsin double-porosity medium. Chin. J. Geophys. (in Chinese), 55: 219-231.
- Ba, J., Du, Q., Carcione, J.M., Zhang, H. and Miiller, T.M., 2015. Seismic Exploration of
- Hydrocarbons in Heterogeneous Reservoirs: New Theories, Methods and
- Applications. Elsevier Science Publishers, Amsterdam.
- Ba, J., Xu, W., Fu, L., Carcione, J.M. and Zhang, L., 2017. Rock anelasticity due topatchy saturation and fabric heterogeneity: A double double-porosity model of wavepropagation. J. Geophys. Res.-Solid Earth, 122: 1949-1976.
- Ba, J., Zhao, J., Carcione, J.M. and Huang, X., 2016. Compressional wave dispersion dueto rock matrix stiffening by clay squirt flow. Geophys, Res. Lett., 43: 6186-6195.doi:10.1002/2016GL069312.
- Baechle, G.T., Colpaert, A., Eberli, G.P. and Weger, R.J., 2008. Effects of microporosityon sonic velocity in carbonate rocks. Geophysics, 27: 1012-1018.
- Baechle, G.T., Weger, R.J., Eberli, G.P., Massaferro, J.L. and Sun, Y., 2005. Changes ofshear moduli in carbonate rocks: Implications for Gassmann applicability. TheLeading Edge, 24: 507-510.
- Bouchaala, F., Ali, M.Y. and Farid, A., 2014. Estimation of compressional seismic waveattenuation of carbonate rocks in Abu Dhabi, United Arab Emirates. Compt. Rend.Geosci., 346: 169-178.
- Cadoret, T., Mavko, G. and Zinszner, B., 1998. Fluid distribution effect on sonicattenuation in partially saturated limestones. Geophysics. 63: 154-160.
- Carcione, J.M., Helle, H.B. and Pham, N.H., 2003. White’s model for wave propagationin partially saturated rocks. Comparison with poroelastic numerical experiments.Geophysics, 68: 1389-1398
- Carcione, J.M., 2014. Wave Fields in Real Media, Theory and Numerical Simulation of
- Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (3rded., extended and revised). Elsevier Science Publishers, Amsterdam.
- Carcione, J.M., Picotti, S., Gei, D. and Rossi, G., 2006. Physics and seismic modeling formonitoring CO2 storage. Pure Appl. Geophys., 163: 175-207.
- Chopra, S., Chemingui, N. and Miller, R.D., 2005. An introduction to this special section- carbonates. The Leading Edge, 24: 488-489.
- Dasgupta, R. and Clark, R.A., 1998. Estimation of Q from surface seismic reflection data.Geophysics, 63: 2120-2128.
- Dasios, A.-T., Astin, T.R. and McCann, C., 1998. Increasing confidence in seismic Qmeasurements: a comparison of estimates from sonic and surface seismic data.
- Expanded Abstr., 68th Ann. Internat. SEG Mtg., New Orleans: 1080-1083.
- Eberli, G.P., Baechle, B., Anselmetti, F. and Incze, M., 2003. Factors controlling elasticproperties in carbonate sediments and rocks. The Leading Edge, 22: 654-660.
- Guo, M., Fu, L. and Ba, J., 2009. Comparison of stress-associated coda attenuation andintrinsic attenuation from ultrasonic measurements. Geophys. J. Internat., 178:447-456.
- Kumar, M. and Han, D., 2005. Pore shape effect on elastic properties of carbonate rocks.
- Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1477-1480.
- Li, H., Zhao, W., Cao, H., Yao F. and Shao, L., 2006. Measures of scale based on thewavelet scalogram with applications to seismic attenuation. Geophysics, 71(5):V111-V118.
- Liu, J., Ba, J., Ma, J. and Yang, H., 2010. An analysis of seismic attenuation in randomporous media. Sci. Chin. Phys., Mechan. Astron., 53: 628-637.
- Lucet, N. and Zinszner, B., 1992. Effects of heterogeneities and anisotropy on sonic andultrasonic attenuation in rocks. Geophysics, 57: 1018-1026.
- Mahbaz, S.B., Sardar, H. and Memarian, H., 2012. Determination of a rock physicsmodel for the carbonate Fahliyan Formation in two oil wells in sourthwestern Iran.Explor. Geophys., 43: 47-57.
- Mavko, G.M. and Nur, A., 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80:1444-1448.
- Mavko, G.M. and Nur, A., 1979. Wave attenuation in partially saturated rocks.Geophysics, 44: 161-178.
- Nunes, B.I.D.C., Medeiros, W.E.D., Nascimento, A.F.D. and Moreira, J.A.D.M., 2011.
- Estimating quality factor from surface seismic data: A comparison of currentapproaches. J. Appl. Geophys., 75: 161-170.
- Picotti, S. and Carcione, J.M., 2006. Estimating seismic attenuation (Q) in the presence ofrandom noise. J. Seismic Explor., 15: 165-181.
- Prasad, M., Fabricius, I.L. and Olsen, C., 2005. Rock physics and statistical well loganalyses in marly chalk. The Leading Edge, 24: 491-495.
- Pride, S.R., Berryman, J.G. and Harris, J.M., 2004. Seismic attenuation due towave-induced flow. J. Geophys. Res., 109(B1), B01201.
- Quan, Y. and Harris, J.M., 1997. Seismic attenuation tomography using the frequencyshift method. Geophysics, 62: 895-905.
- Sahu, S.S., Panda, G. and George, N.V., 2009. An improved S-transform fortime-frequency analysis. Advance Computing Conf., [ACC 2009, Patiala, India.
- Sain, R., Chen, G., Xu, S. and Payne, M.A., 2008. Carbonate rock physics: Geophysicaland petrophysical pore types of carbonate rocks from an offshore carbonate field.
- Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 1655-1699.
- Sayers, C.M., 2008. The elastic properties of carbonates. The Leading Edge, 27:1020-1024.
- Stockwell, R.G., 2007. A basis for efficient representation of the S-transform. Digit. Sign.Process., 17: 371-393.
- Stockwell, R.G., Mansinha, L. and Lowe, R.P., 1996. Localization of the complexspectrum: the S transform. IEEE Transact. Sign. Process., 44: 998-1001.
- Sun, Y., 2004. Seismic signatures of rock pore structure. Appl. Geophys., 1: 42-49.
- Sun, Z., Wang, H., Liu, Z., Li, Y., Zhou, X. and Wang, Z., 2012. The theory andapplication of DEM-Gassmann rock physics model for complex carbonate reservoirs.The Leading Edge, 31: 152-158.
- Tokséz, M.N., Johnston, D.H. and Timur, A., 1979. Attenuation of seismic waves in dryand saturated rocks: L. Laboratory measurements. Geophysics, 44: 681-690.
- Tonn, R., 1991. The determination of the seismic quality factor Q from VSP data: Acomparison of different computational methods. Geophys. Prosp., 39: 1-27.
- Vanorio, T., Scotellaro, C. and Mavko, G., 2008. The effect of chemical and physicalprocesses on the acoustic properties of carbonate rocks. The Leading Edge, 27:1040-1048.
- Weger, R.J., Eberli, G.P., Baechle, G.T., Massaferro, J.-L. and Sun, Y.F., 2009.
- Quantification of pore structure and its effect on sonic velocity and permeability incarbonates. AAPG Bull., 93: 1297-1317.
- Wang, Y., 2004. Q analysis on reflection seismic data. Geophys. Res. Lett., 31(17):L17606.
- White, J., 1975. Computed seismic speeds and attenuation in rocks with partial gassaturation. Geophysics, 40: 224-232.
- White, R., 1992. The accuracy of estimating Q from seismic data. Geophysics, 57:1508-1511.
- Winkler, K.W. and Nur, A., 1979. Pore fluids and seismic attenuation in rocks.Geophys. Res. Lett., 6: 1-4.
- Winkler, K.W. and Murphy, W.F. III, 1995. Acoustic velocity and attenuation in porousrocks. In: Rock Physics and Phase Relations, Vol. 3, AGU: 20-34.
- Xu, S. and Payne, M.A., 2009. Modeling elastic properties in carbonate rocks. TheLeading Edge, 28: 66-74.
- Xu, S. and White, R.E., 1995. A new velociy model for clay-sand mixtures. Geophys.Prosp., 43: 91-118.
- Zhang, C., 2008. Seismic Absorption Estimation and Compensation. Ph.D. Thesis, TheUniversity of British Columbia, Vancouver.
- Zhang, C. and Ulrych, T.J., 2002. Estimation of quality factors from CMP records:Geophysics, 67: 1542-1547.