ARTICLE

Elastic impedance parameterization and inversion in a vertical, rotationally invariant fractured HTI medium

XINPENG PAN1 GUANGZHI ZHANG1,2 HUAIZHEN CHEN3 XINGYAO YIN1,2
Show Less
1 School of Sciences, China University of Petroleum (Huadong), Qingdao, Shandong, P.R. China. parxinpeng1990@gmail.com,
2 Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, P.R. China.,
3 Department of Geoscience, University of Calgary, Calgary, Alberta, Canada.,
JSE 2018, 27(3), 227–254;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Pan, X.P., Zhang, G.Z., Chen, H.Z. and Yin, X.Y., 2018. Elastic impedance parameterization and inversion in a vertical, rotationally invariant fractured HTI medium. Journal of Seismic Exploration, 27: 227-254. Seismic wave propagating in a purely isotropic background medium containing a single set of vertically aligned fractures exhibits a long-wavelength effective transversely isotropy (HTI) with a horizontal symmetry axis. The estimation of fracture weaknesses is significant for the characterization of anisotropy in a fracture-induced HTI medium. Our goal is to demonstrate an azimuthal elastic impedance inversion approach for fracture characterization by utilizing the observable wide-azimuth seismic reflection data in a vertical, rotationally invariant fractured reservoir. Under the assumption of weak contrast across the interface and weak anisotropy, we first derive the perturbations in elastic stiffness parameters of a weakly HTI medium. Then we derive a linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, and fracture weaknesses for the case of a weak-contrast interface separating two weakly HTI media based on the perturbation matrix and scattering function. Using the least square ellipse fitting (LSEF) method to calculate the azimuth of fracture normal, we build a perfect linear relationship between the reflection coefficient and fracture weaknesses. Finally, we propose a novel parameterization method for fracture weaknesses, and derive the elastic impedance variation with angles of incidence and azimuth (EIVAZ) equation. In order to refine the inversion stability and lateral continuity, we implement the EIVAZ inversion in a Bayesian framework incorporating the Cauchy-sparse regularization and the low-frequency information regularization, and the nonlinear iteratively reweighted least squares (IRLS) strategy is employed to solve the linear inversion problem. A test on a real data set indicates that the estimated results agree well with the well log interpretation, and the proposed method appears to generate reliable results for the characterization of fractured reservoirs.

Keywords
fracture-induced HTI medium
rotationally invariant fractures
weak-contrast and weak-anisotropy assumption
quasi-weakness parameters
EIVAZ inversion
References
  1. Alemie, W. and Sacchi, M.D., 2011. High-resolution three-term AVO inversion by
  2. means of a Trivariate Cauchy probability distribution. Geophysics, 76: R43-R55.
  3. Bakulin, A., Grechka, V. and Tsvankin, I., 2000. Estimation of fracture parameters from
  4. reflection seismic data-Part 1: HTI model due to a single fracture set. Geophysics, 65:
  5. 1788-1802.
  6. Bissantz, N., Diimbgen, L., Munk, A. and Stratmann, B., 2009. Convergence analysis of
  7. generalized iteratively reweighted least squares algorithms on convex function
  8. spaces. J. Optimizat., 19: 1828-1845.
  9. Buland, A. and Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics, 68:
  10. 185-198.
  11. Burns, D.R., Willis, M.E., Tokséz, M.N., Vetri, L. and Donato, S., 2007. Fracture
  12. properties from seismic scattering. The Leading Edge, 26: 1186-1196.
  13. Burridge, R., de Hoop, M.V., Miller, D. and Spencer, C., 1998. Multiparameter inversion
  14. in anisotropic media. Geophys. J. Internat., 134: 757-777.
  15. Cerveny, V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge.
  16. Chen, H. , Zhang, G., Chen, J. and Yin, X., 2014. Fracture filling fluids identification
  17. using azimuthally elastic impedance based on rock physics. J. Appl. Geophys., 110:
  18. 98-105.
  19. Chen, H., Zhang, G., Ji, Y. and Yin, X., 2017. Azimuthal seismic amplitude difference
  20. inversion for fracture weakness. Pure Appl. Geophys., 174: 279-291.
  21. Connolly, P., 1999, Elastic impedance. The Leading Edge, 18: 438-452.
  22. Daubechies, I., DeVore, R., Fornasier, M. and Giintiirk, C.S., 2010. Iteratively
  23. reweighted least squares minimization for sparse recovery. Communic. Pure Appl.
  24. Mathemat., 63: 1-38.
  25. Dolberg, D.M., Helgesen, J., Hanssen, T.H., Magnus, I., Saigal, G. and Pedersen, B.K.,
  26. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace,
  27. Norway. The Leading Edge, 19: 392-399.
  28. Downton, J., 2005. Seismic Parameter Estimation from AVO Inversion. Ph.D. Thesis,
  29. University of Calgary.
  30. Eaton, D.W.S. and Stewart, R., 1994. Migration/inversion for transversely isotropic
  31. elastic media. Geophys. J. Internat., 119: 667-683.
  32. Grechka, V., Bakulin, A. and Tsvankin, I., 2003. Seismic characterization of vertical
  33. fractures described as general linear slip interfaces. Geophys. Prosp., 51: 117-129.
  34. Helgesen, J., Magnus, I., Prosser, S., Saigal, G., Aamodt, G., Dolberg, D. and Busman, S.,
  35. Comparison of constrained sparse spike and stochastic inversion for porosity
  36. prediction at Kristin Field. The Leading Edge, 19: 400-407.
  37. Hsu, C.J. and Schoenberg, M., 1993. Elastic waves through a simulated fractured
  38. medium. Geophysics, 58: 964-977.
  39. Jenner, E., 2002. Azimuthal AVO: Methodology and data examples. The Leading Edge,
  40. 21: 782-786.
  41. Liu, E. and Martinez, A., 2012. Seismic fracture characterization : Concepts and practical
  42. applications. EAGE, Houten, The Netherlands.
  43. Mahmoudian, F. and Margrave, G.F., 2012. AVAZ inversion for fracture orientation and
  44. intensity: a physical modeling study. Extended Abstr., 74th EAGE Conf.,
  45. Copenhagen.
  46. Martins, J.L., 2006. Elastic impedance in weakly anisotropic media. Geophysics, 71:
  47. 2092-2096.
  48. Narr, W., Schechter, W.S. and Thompson, L., 2006. Naturally fractured reservoir
  49. characterization: SPE monograph, Richardson, TX, USA.
  50. Pan, X., Zhang, G., Chen, H. and Yin, X., 2017a. McMC-based AVAZ direct inversion
  51. for fracture weaknesse. J. Appl. Geophys., 138: 50-61.
  52. Pan, X., Zhang, G., Chen, H. and Yin, X., 2017b. McMC-based nonlinear EIVAZ
  53. inversion driven by rock physics. J. Geophys. Engineer., 14: 368-379.
  54. PSenéik, I. and Gajewski, D., 1998. Polarization, phase velocity and NMO velocity of qP
  55. waves in arbitrary weakly anisotropic media. Geophysics, 63: 1754-1766.
  56. PSen¢ik, I. and Vavryéuk, V., 1998. Weak contrast PP-wave displacement R/T
  57. coefficients in weakly anisotropic elastic media. Pure Appl. Geophys., 151: 699-718.
  58. PSencik, I. and Martins, J.L., 2001. Properties of weak contrast PP reflection/
  59. transmission coefficients for weakly anisotropic elastic media. Studia Geophys.
  60. Geodaet., 45: 176-199.
  61. Riiger, A., 1997. P-wave reflection coefficients for transversely isotropic models with
  62. vertical and horizontal axis of symmetry. Geophysics, 62: 713-722.
  63. Riiger, A., 1998. Variation of P-wave reflectivity with offset and azimuth in anisotropic
  64. media. Geophysics, 63: 935-947.
  65. Sacchi, M.D. and Ulrych, T.J., 1995. High-resolution velocity gathers and offset space
  66. reconstruction. Geophysics, 60: 1169-1177.
  67. Scales, J.A. and Smith, M.L., 2000. Introductory Geophysical Inverse Theory (draft).
  68. Samizdat Press, Golden, CO.
  69. Schoenberg, M., 1980. Elastic wave behavior across linear slip interfaces. J. Acoustical
  70. Soc. Am., 68: 1516-1521.
  71. Schoenberg, M., 1983. Reflection of elastic waves from periodically stratified media with
  72. interfacial slip. Geophys. Prosp., 31: 265-292.
  73. Schoenberg, M. and Sayers, C.M., 1995. Seismic anisotropy of fractured rock.
  74. Geophysics, 60: 204-211.
  75. Shaw, R.K. and Sen, M.K., 2004. Born integral, stationary phase and linearized reflection
  76. coefficients in weak anisotropic media. Geophys. J. Internat., 158: 225-238.
  77. Shaw, R.K. and Sen, M.K., 2006. Use of AVOA data to estimate fluid indicator in a
  78. vertically fractured medium. Geophysics, 71: C15-C24.
  79. Stolt, R.H. and Weglein, A.B., 1985. Migration and inversion of seismic data.
  80. Geophysics, 50: 2458-2472.
  81. Thomsen, L., 1986, Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  82. Thomsen, L., 2002. Understanding seismic anisotropy in exploration and exploitation.
  83. SEG 2010 Disting. Instruct. Series, Vol. 5. SEG, Tulsa, OK.
  84. Tsvankin, L., 1996. P-wave signatures and notation for transversely isotropic media: an
  85. overview. Geophysics, 61: 467-483.
  86. Tsvankin, L. and Grechka, V., 2011. Seismology of Azimuthally Anisotropic Media and
  87. Seismic Fracture Characterization. SEG, Tulsa, OK.
  88. Whitcombe, D.N., 2002. Elastic impedance normalization. Geophysics, 67: 60-62.
  89. Yin, X., Zong, Z. and Wu, G., 2013. Seismic wave scattering inversion for fluid factor of
  90. heterogeneous media. Sci. China: Earth Sci., 43: 1934-1942.
  91. Zong, Z., Yin, X. and Wu, G., 2012. AVO inversion and poroelasticity with P- and
  92. S-wave moduli. Geophysics, 77: 29-36.
  93. Zong, Z., Yin, X. and Wu, G., 2013. Elastic impedance parameterization and inversion
  94. with Young’s modulus and Poisson’s ratio. Geophysics, 78: N35-42.
  95. Zong, Z., Yin, X., Wu, G. and Wu, Z.P., 2015. Elastic inverse scattering for fluid
  96. variation with time-lapse seismic data. Geophysics, 80: WA61-WA67.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing