A fast uncoiled randomized QR decomposition method for 5D seismic data reconstruction

Wang, S., Gao, J. and Li, J., 2018. A fast uncoiled randomized QR decomposition method for 5D seismic data reconstruction. Journal of Seismic Exploration, 27: 255-276. The low rank matrix completion methods have been widely applied to reconstruct multidimensional irregular seismic data. The existing literature shows that well sampled seismic data can be represented by a low rank block Hankel or block Toeplitz matrix. However, incomplete data and random noise can destroy the low rank property of the block matrix. Hence, the recovery of missing seismic traces can be treated as a rank reduction problem. This paper presents a fast rank reduction algorithm named randomized QR decomposition to interpolate the pre-stack 5D irregular missing seismic traces. Compared with the popular matrix rank reduction algorithms, such as the Singular Value Decomposition (SVD) and the Lanczos bidiagonalization decomposition method, this method has higher computational efficiency and faster reconstruction speed. Moreover, for the computationally low efficient problem of the diagonal averaging operation of the rank-reduced level-4 block Toeplitz matrix, a fast uncoiled diagonal averaging strategy is designed. The new diagonal averaging algorithm can greatly reduce the amount of data storage and decrease the computational cost. In the end, the validity of the proposed method is verified by synthetic data experiments and a field data test.
- Cao, J. and Wang, B., 2015. An improved projection onto convex sets method forsimultaneous interpolation and denoising. Chin. J. Geophys., 58: 2935-2947.
- Chiron, L., Agthoven, M., Kieffer, B., Rolando, C. and Delsuc, M., 2014. Efficientdenoising algorithms for large experimental datasets and their applications in
- Fourier transform ion cyclotron resonance mass spectrometry. Proc. Natl. Acad.Sci. U.S.A., 111: 1385-1390.
- Cheng, J. and Sacchi, M., 2016. Fast and memory-efficient singular spectrum analysis forseismic data reconstruction and denoising. Expanded Abstr., 87th Ann. Internat.SEG Mtg., Houston: 4064-4068.
- Duijndam, A., Schonewille, M. and Hindriks, C., 1999. Reconstruction of band-limitedsignals, irregularly sampled along one spatial direction. Geophysics, 64: 524-538.
- Gan, S., Wang, S., Chen, Y., Zhang,Y. and Jin, Z., 2015. Dealiased seismic datainterpolation using seislet transform with low-frequency constraint. IEEE Geosci.Remote Sens. Lett., 12: 2150-2154.
- Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H., 2016. Compressivesensing for seismic data reconstruction using a fast projection onto convex setsalgorithm based on the seislet transform. J. Appl. Geophys., 130: 194-208.
- Gao, J., Chen, X., Liu, G. and Ma, J., 2010. Irregular seismic data reconstruction basedon exponential threshold model of POCS method. Appl. Geophys., 7: 229-238.
- Gao, J., Stanton, A., Naghizadeh, M., Sacchi, M. and Chen, X., 2013a. Convergenceimprovement and noise attenuation considerations for beyond alias projection ontoconvex sets reconstruction. Geophys. Prospect., 61: 138-151.
- Gao, J., Sacchi, M. and Chen, X., 2013b. A fast reduced-rank interpolation method forprestack seismic volumes that depend on four spatial dimensions. Geophysics, 78:V21-V30.
- Gao, J., Stanton, A. and Sacchi, M., 2015. Parallel matrix factorization algorithm and itsapplication to 5SD seismic reconstruction and denoising. Geophysics, 80:V173-V187.
- Halko, N., Martinsson, P. and Tropp, J., 2011. Finding structure with randomness:probabilistic algorithms for constructing approximate matrix decompositions. SIAMRev., 53: 217-288.
- Herrmann, J. and Hennenfent, G., 2008. Non-parametric seismic data recovery withcurvelet frames. Geophys. J. Int., 173: 233-248.
- Jia, Y., Yu, S., Liu, L. and Ma, J., 2016. A fast rank-reduction algorithm forthree-dimensional seismic data interpolation. J. Appl. Geophys., 132: 137-145.
- Kaplan, S., Naghizadeh, M. and Sacchi, M., 2010. Data reconstruction with shot-profileleast-squares migration. Geophysics, 75: WB121-WB136.
- Kutscha, H. and Verschuur, E. Data reconstruction via sparse double focal transform: anoverview. IEEE Signal Proc. Mag., 29: 53-60.
- Liu, B. and Sacchi, M., 2004. Minimum weighted norm interpolation of seismic records.Geophysics, 69: 1560-1568.
- Liu, C., Li, P. and Liu, Y., 2013. Iterative data interpolation beyond aliasing using seislettransform. Chin. J. Geophys., 56: 1619-1627.
- Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016. One-step slope estimationfor dealiased seismic data reconstruction via Iterative Seislet thresholding. IEEEGeosci. Remote Sens. Lett., 13: 1462-1466.
- Naghizadeh, M. and Sacchi, M., 2007. Multi-step autoregressive reconstruction ofseismic records. Geophysics, 72: V111-V118.
- Naghizadeh, M. and Sacchi,M., 2009. f-x adaptive seismic trace interpolation.Geophysics, 74: V9-V 16.
- Naghizadeh, M. and Sacchi,M., 2010. Beyond alias hierarchical scale curveletinterpolation of regularly and irregularly sampled seismic data. Geophysics, 75:WB189-WB202.
- Naghizadeh, M. and Sacchi, M., 2013. Multidimensional de-aliased Cadzowreconstruction of seismic records. Geophysics, 78: Al-AS.
- Oropeza, V. and Sacchi,M., 2011. Simultaneous seismic data de-noising andreconstruction via multichannel singular spectrum analysis. Geophysics, 76:V25-V32.
- Porsani, M., 1999. Seismic trace interpolation using half-step prediction filters.Geophysics, 64: 1461-1467.
- Ronen, J., 1987. Wave-equation trace interpolation. Geophysics, 52: 973-984.
- Spitz, S., 1991. Seismic trace interpolation in the F-X domain. Geophysics, 56: 785-794.
- Tang, H. and Mao, W., 2014. Amplitude preserved seismic data reconstruction by 3Dhigh-order parabolic Radon transform. Chin. J. Geophys., 57: 2918-2927.
- Trad, D., Ulrych, T. and Sacchi, M., 2002. Accurate interpolation with high resolutionstime variant radon transforms. Geophysics, 67: 644-656.
- Trickett S., 2010. Rank-reduction-based trace interpolation. Expanded Abstr., 80th Ann.Internat. SEG Mtg., Denver: 1989-1992.
- Wang, B., Wu, R. and Chen, X., 2015. Simultaneous seismic data interpolation anddenoising with a new adaptive method based on dreamlet transform. Geophys. J. Int.,201: 1182-1194.
- Wang, B., Wu, R. and Chen, X., 2014. Dreamlet-based interpolation using POCS method.J. Appl. Geophys., 109: 256-265.
- Xu, S., Zhang, Y., Pham, D. and Lambare, G., 2005. Anti-leakage Fourier transform forseismic data regularization. Geophysics, 70: V87-V95.
- Xue, Y., Ma, J. and Chen, X., 2014. High-order sparse Radon transform for
- AVO-preserving data reconstruction. Geophysics, 79: V13-V22.
- Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation ofnon-uniformly sampled seismic records. J. Appl. Geophys, 79: 90-99.
- Zhang, H., Chen, X. and Zhang, L., 2017. 3D simultaneous seismic data reconstructionand noise suppression based on the curvelet transform. Appl. Geophys., 14: 87-95.
- Zwartjes, P. and Gisolf, A., 2007. Fourier reconstruction with sparse inversion. Geophys.Prosp., 55: 199-221.