ARTICLE

A fast uncoiled randomized QR decomposition method for 5D seismic data reconstruction

SHENGHOU WANG1 JIANJUN GAO1,2 JINGYE LI2
Show Less
1 School of Geophysics and Information Technology, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,
2 State Key Laboratory of Petroleum Resources and Prospecting (China University of Petroleum, Beijing), Beijing 102249, P.R. China.,
JSE 2018, 27(3), 255–276;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, S., Gao, J. and Li, J., 2018. A fast uncoiled randomized QR decomposition method for 5D seismic data reconstruction. Journal of Seismic Exploration, 27: 255-276. The low rank matrix completion methods have been widely applied to reconstruct multidimensional irregular seismic data. The existing literature shows that well sampled seismic data can be represented by a low rank block Hankel or block Toeplitz matrix. However, incomplete data and random noise can destroy the low rank property of the block matrix. Hence, the recovery of missing seismic traces can be treated as a rank reduction problem. This paper presents a fast rank reduction algorithm named randomized QR decomposition to interpolate the pre-stack 5D irregular missing seismic traces. Compared with the popular matrix rank reduction algorithms, such as the Singular Value Decomposition (SVD) and the Lanczos bidiagonalization decomposition method, this method has higher computational efficiency and faster reconstruction speed. Moreover, for the computationally low efficient problem of the diagonal averaging operation of the rank-reduced level-4 block Toeplitz matrix, a fast uncoiled diagonal averaging strategy is designed. The new diagonal averaging algorithm can greatly reduce the amount of data storage and decrease the computational cost. In the end, the validity of the proposed method is verified by synthetic data experiments and a field data test.

Keywords
rank reduction
randomized QR decomposition
multilevel Toeplitz structures
5D seismic data reconstruction
References
  1. Cao, J. and Wang, B., 2015. An improved projection onto convex sets method for
  2. simultaneous interpolation and denoising. Chin. J. Geophys., 58: 2935-2947.
  3. Chiron, L., Agthoven, M., Kieffer, B., Rolando, C. and Delsuc, M., 2014. Efficient
  4. denoising algorithms for large experimental datasets and their applications in
  5. Fourier transform ion cyclotron resonance mass spectrometry. Proc. Natl. Acad.
  6. Sci. U.S.A., 111: 1385-1390.
  7. Cheng, J. and Sacchi, M., 2016. Fast and memory-efficient singular spectrum analysis for
  8. seismic data reconstruction and denoising. Expanded Abstr., 87th Ann. Internat.
  9. SEG Mtg., Houston: 4064-4068.
  10. Duijndam, A., Schonewille, M. and Hindriks, C., 1999. Reconstruction of band-limited
  11. signals, irregularly sampled along one spatial direction. Geophysics, 64: 524-538.
  12. Gan, S., Wang, S., Chen, Y., Zhang,Y. and Jin, Z., 2015. Dealiased seismic data
  13. interpolation using seislet transform with low-frequency constraint. IEEE Geosci.
  14. Remote Sens. Lett., 12: 2150-2154.
  15. Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H., 2016. Compressive
  16. sensing for seismic data reconstruction using a fast projection onto convex sets
  17. algorithm based on the seislet transform. J. Appl. Geophys., 130: 194-208.
  18. Gao, J., Chen, X., Liu, G. and Ma, J., 2010. Irregular seismic data reconstruction based
  19. on exponential threshold model of POCS method. Appl. Geophys., 7: 229-238.
  20. Gao, J., Stanton, A., Naghizadeh, M., Sacchi, M. and Chen, X., 2013a. Convergence
  21. improvement and noise attenuation considerations for beyond alias projection onto
  22. convex sets reconstruction. Geophys. Prospect., 61: 138-151.
  23. Gao, J., Sacchi, M. and Chen, X., 2013b. A fast reduced-rank interpolation method for
  24. prestack seismic volumes that depend on four spatial dimensions. Geophysics, 78:
  25. V21-V30.
  26. Gao, J., Stanton, A. and Sacchi, M., 2015. Parallel matrix factorization algorithm and its
  27. application to 5SD seismic reconstruction and denoising. Geophysics, 80:
  28. V173-V187.
  29. Halko, N., Martinsson, P. and Tropp, J., 2011. Finding structure with randomness:
  30. probabilistic algorithms for constructing approximate matrix decompositions. SIAM
  31. Rev., 53: 217-288.
  32. Herrmann, J. and Hennenfent, G., 2008. Non-parametric seismic data recovery with
  33. curvelet frames. Geophys. J. Int., 173: 233-248.
  34. Jia, Y., Yu, S., Liu, L. and Ma, J., 2016. A fast rank-reduction algorithm for
  35. three-dimensional seismic data interpolation. J. Appl. Geophys., 132: 137-145.
  36. Kaplan, S., Naghizadeh, M. and Sacchi, M., 2010. Data reconstruction with shot-profile
  37. least-squares migration. Geophysics, 75: WB121-WB136.
  38. Kutscha, H. and Verschuur, E. Data reconstruction via sparse double focal transform: an
  39. overview. IEEE Signal Proc. Mag., 29: 53-60.
  40. Liu, B. and Sacchi, M., 2004. Minimum weighted norm interpolation of seismic records.
  41. Geophysics, 69: 1560-1568.
  42. Liu, C., Li, P. and Liu, Y., 2013. Iterative data interpolation beyond aliasing using seislet
  43. transform. Chin. J. Geophys., 56: 1619-1627.
  44. Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016. One-step slope estimation
  45. for dealiased seismic data reconstruction via Iterative Seislet thresholding. IEEE
  46. Geosci. Remote Sens. Lett., 13: 1462-1466.
  47. Naghizadeh, M. and Sacchi, M., 2007. Multi-step autoregressive reconstruction of
  48. seismic records. Geophysics, 72: V111-V118.
  49. Naghizadeh, M. and Sacchi,M., 2009. f-x adaptive seismic trace interpolation.
  50. Geophysics, 74: V9-V 16.
  51. Naghizadeh, M. and Sacchi,M., 2010. Beyond alias hierarchical scale curvelet
  52. interpolation of regularly and irregularly sampled seismic data. Geophysics, 75:
  53. WB189-WB202.
  54. Naghizadeh, M. and Sacchi, M., 2013. Multidimensional de-aliased Cadzow
  55. reconstruction of seismic records. Geophysics, 78: Al-AS.
  56. Oropeza, V. and Sacchi,M., 2011. Simultaneous seismic data de-noising and
  57. reconstruction via multichannel singular spectrum analysis. Geophysics, 76:
  58. V25-V32.
  59. Porsani, M., 1999. Seismic trace interpolation using half-step prediction filters.
  60. Geophysics, 64: 1461-1467.
  61. Ronen, J., 1987. Wave-equation trace interpolation. Geophysics, 52: 973-984.
  62. Spitz, S., 1991. Seismic trace interpolation in the F-X domain. Geophysics, 56: 785-794.
  63. Tang, H. and Mao, W., 2014. Amplitude preserved seismic data reconstruction by 3D
  64. high-order parabolic Radon transform. Chin. J. Geophys., 57: 2918-2927.
  65. Trad, D., Ulrych, T. and Sacchi, M., 2002. Accurate interpolation with high resolutions
  66. time variant radon transforms. Geophysics, 67: 644-656.
  67. Trickett S., 2010. Rank-reduction-based trace interpolation. Expanded Abstr., 80th Ann.
  68. Internat. SEG Mtg., Denver: 1989-1992.
  69. Wang, B., Wu, R. and Chen, X., 2015. Simultaneous seismic data interpolation and
  70. denoising with a new adaptive method based on dreamlet transform. Geophys. J. Int.,
  71. 201: 1182-1194.
  72. Wang, B., Wu, R. and Chen, X., 2014. Dreamlet-based interpolation using POCS method.
  73. J. Appl. Geophys., 109: 256-265.
  74. Xu, S., Zhang, Y., Pham, D. and Lambare, G., 2005. Anti-leakage Fourier transform for
  75. seismic data regularization. Geophysics, 70: V87-V95.
  76. Xue, Y., Ma, J. and Chen, X., 2014. High-order sparse Radon transform for
  77. AVO-preserving data reconstruction. Geophysics, 79: V13-V22.
  78. Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation of
  79. non-uniformly sampled seismic records. J. Appl. Geophys, 79: 90-99.
  80. Zhang, H., Chen, X. and Zhang, L., 2017. 3D simultaneous seismic data reconstruction
  81. and noise suppression based on the curvelet transform. Appl. Geophys., 14: 87-95.
  82. Zwartjes, P. and Gisolf, A., 2007. Fourier reconstruction with sparse inversion. Geophys.
  83. Prosp., 55: 199-221.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing