Cite this article
2
Download
48
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Seismic deconvolution using iterative transform-domain sparse inversion

JSE 2018, 27(2), 103–115;
Submitted: 9 June 2025 | Accepted: 9 June 2025 | Published: 1 April 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bai, M. and Wu, J., 2018. Seismic deconvolution using iterative transform-domain sparse inversion. Journal of Seismic Exploration, 27: 103-116. Post-stack seismic deconvolution is a classic inverse problem in seismic exploration, which can tremendously improve the resolution of seismic reflectors. Because of the WIE UG ID WULUE UI My CoURatEU, rane une werd lrverrsbrsie rr? 1 ~ 一 a 1 problem by applying different constraints. We propose apply: 了 domain ‘sity constraint to the inverse deconvolution problem and propose to solve it by a ple iterative thresh- olding algorithm. Compared with the alternative Wiener filtering, proposed iterative transform-domain thresholding algorithm can improve the tal-to-noise ratio (SNR) and the spatial coherency of the seismic data after onvolution. Both synthetic and field data example are used to demonstrate the erior performance of the proposed algorithm.

Keywords
seismic deconvolution
sparse inversion
sparse constraint
noise attenuation
thresholding operator
References
  1. Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEGMtg., Atlanta: 525-527.
  2. Chen, G., Fu, L.Y., Chen, K.F., Sun, W., Wei, W. and Guan, X., 2017a. Calculation ofthe seismic imaging complexity of complex geological structures. J. Seismic Explor.,26: 81-104.
  3. Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017b. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26: 25-47.
  4. Chen, Y., 2015. Iterative deblending with multiple constraints based on shapingregularization. IEEE Geosci. Remote Sens. Lett., 12: 2247-2251.
  5. Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptiveempirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
  6. Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensionalseismic data. Geophys. J. Internat., 209: 21-31.
  7. Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80(6): WD1-WD9.
  8. Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-sourceseismic data using seislet-domain shaping regularization. Geophysics, 79: V179-V189.
  9. Chen, Y., Gan, S., Qu, S. and Zu, S., 2015. Sparse inversion for water bubble removaland spectral enhancement. J. Appl. Geophys., 117: 81-90.
  10. Chen, Y. and Jin, Z., 2015. Simultaneously removing noise and increasing resolution ofseismic data using waveform shaping. IEEE Geosci. Remote Sens. Lett., 13:102-104.
  11. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical modedecomposition predictive filtering. Geophysics, 79: V81-V91.
  12. Chen, Y., Zhou, Y., Chen, W., Zu, $., Huang, W. and Zhang, D., 2017c. Empirical lowrank decomposition for seismic noise attenuation. IEEE Transact. Geosci. RemoteSens., 55: 4696-4711.
  13. Fomel, S. and Liu, Y., 2010,. Seislet transform and seislet frame. Geophysics, 75:V25-V38.
  14. Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H., 2016a. Compressivesensing for seismic data reconstruction using a fast projection onto convex setsalgorithm based on the seislet transform. J. Appl. Geophys., 130: 194-208.
  15. Gan, S., Wang, S., Chen, Y. and Chen, X., 2016b. Simultaneous-source separation usingiterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-201.
  16. Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016c. Separation of simultaneoussources using a structural-oriented median filter in the flattened dimension. Comput.Geosci., 86: 46-54.
  17. Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015. Dealiased seismic datainterpolation using seislet transform with low-frequency constraint. IEEE Geosci.Remote Sens. Lett., 12: 2150-2154.
  18. Huang, W., Wang, R., Chen, X. and Chen, Y., 2017a. Double least squares projectionsmethod for signal estimation. IEEE Transact. Geosci. Remote Sens., 55: 4111-4129.
  19. Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannel singularspectrum analysis for 3D random noise attenuation. Geophysics, 81(4): V261-V270.
  20. Huang, W., Wang, R., Yuan, Y., Gan, S. and Chen, Y., 2017b. Signal extraction usingrandomized-order multichannel singular spectrum analysis. Geophysics, 82(2):V59-V74.
  21. Huang, W., Wang, R., Zhang, D., Zhou, Y., Yang, W. and Chen, Y., 2017c.
  22. Mathematical morphological filtering in a rotating coordinate system for coherentnoise attenuation. Geophysics, 82: V369-V384. doi: 10.1190/geo2016-0580.1.
  23. Kong, D., Peng, Z., He, Y. and Fan, H., 2016. Seismic random noise attenuation usingdirectional total variation in the shearlet domain. J. Seismic Explor., 25: 321-338.
  24. Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequencynoise suppression based on mathematical morphology in microseismic monitoring.Geophysics, 81(3): V159-V 167.
  25. Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detection188 morphology in microseismic monitoring. J. Appl. Geophys., 133:39-49.
  26. Liu, C., Wang, D., Hu, B. and Wang, T., 2016a. Seismic deconvolution with shearletsparsity constrained inversion. J. Seismic Explor., 25: 433-445.
  27. Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-xregularized nonstationary autoregression. Geophysics, 77: V61-V69.
  28. Liu, W., Cao, S. and Chen, Y., 2016b. Applications of variational mode decomposition inseismic time-frequency analysis. Geophysics, 81(5): V365-V378.
  29. Liu, W., Cao, S., Chen, Y. and Zu, S., 2016c. An effective approach to attenuate randomnoise based on compressive sensing and curvelet transform. J. Geophys. Engineer.,13: 135-145.
  30. Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016d. One-step slope estimationfor dealiased seismic data reconstruction via iterative seislet thresholding. IEEEGeosci. Remote Sens. Lett., 13: 1462-1466.
  31. Liu, W., Cao, S., Liu, Y. and Chen, Y., 2016e. Synchrosqueezing transform and itsapplications in seismic data analysis. J. Seismic Explor., 25: 27-44.
  32. Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising andinterpolation of 2D seismic data using data-driven non-negative dictionary learning.Sign. Process., 141: 309-321.
  33. Siahsar, M.A.N., Gholtashi, $., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-drivenmulti-task sparse dictionary learning for noise attenuation of 3D seismic data.
  34. Geophysics, 82(6): V385-V396. doi: 10.1190/geo2017-0084.1.
  35. Siahsar, M.A.N., Gholtashi, $., Olyaei, E., Chen, W. and Chen, Y., 2017c. Simultaneousdenoising and interpolation of 3D seismic data via damped data-driven optimalsingular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  36. Sun, W. and Wang, H., 2016. Water-layer-related demultiple method using constraints inthe sparse, local tau-p domain. J. Seismic Explor., 25: 463-483.
  37. Wu, J., Wang, R., Chen, Y., Zhang, Y., Gan, S. and Zhou, C., 2016. Multiples attenuationusing shaping regularization with seislet domain sparsity constraint. J. SeismicExplor., 25: 1-9.
  38. Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016. Simultaneous sources separation viaan iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13:1915-1919.
  39. Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterativedeblending of simultaneous source seismic data using high-order radon transform.J. Appl. Geophys., 139: 79-90.
  40. Yang, W., Wang, R., Wu, J., Chen, Y., Gan, S. and Zhong, W., 2015. An efficient andeffective common reflection surface stacking approach using local similarity andplane-wave flattening. J. Appl. Geophys., 117: 67-72.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing