Seismic deconvolution using iterative transform-domain sparse inversion

Bai, M. and Wu, J., 2018. Seismic deconvolution using iterative transform-domain sparse inversion. Journal of Seismic Exploration, 27: 103-116. Post-stack seismic deconvolution is a classic inverse problem in seismic exploration, which can tremendously improve the resolution of seismic reflectors. Because of the WIE UG ID WULUE UI My CoURatEU, rane une werd lrverrsbrsie rr? 1 ~ 一 a 1 problem by applying different constraints. We propose apply: 了 domain ‘sity constraint to the inverse deconvolution problem and propose to solve it by a ple iterative thresh- olding algorithm. Compared with the alternative Wiener filtering, proposed iterative transform-domain thresholding algorithm can improve the tal-to-noise ratio (SNR) and the spatial coherency of the seismic data after onvolution. Both synthetic and field data example are used to demonstrate the erior performance of the proposed algorithm.
- Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEGMtg., Atlanta: 525-527.
- Chen, G., Fu, L.Y., Chen, K.F., Sun, W., Wei, W. and Guan, X., 2017a. Calculation ofthe seismic imaging complexity of complex geological structures. J. Seismic Explor.,26: 81-104.
- Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017b. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26: 25-47.
- Chen, Y., 2015. Iterative deblending with multiple constraints based on shapingregularization. IEEE Geosci. Remote Sens. Lett., 12: 2247-2251.
- Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptiveempirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
- Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensionalseismic data. Geophys. J. Internat., 209: 21-31.
- Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80(6): WD1-WD9.
- Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-sourceseismic data using seislet-domain shaping regularization. Geophysics, 79: V179-V189.
- Chen, Y., Gan, S., Qu, S. and Zu, S., 2015. Sparse inversion for water bubble removaland spectral enhancement. J. Appl. Geophys., 117: 81-90.
- Chen, Y. and Jin, Z., 2015. Simultaneously removing noise and increasing resolution ofseismic data using waveform shaping. IEEE Geosci. Remote Sens. Lett., 13:102-104.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical modedecomposition predictive filtering. Geophysics, 79: V81-V91.
- Chen, Y., Zhou, Y., Chen, W., Zu, $., Huang, W. and Zhang, D., 2017c. Empirical lowrank decomposition for seismic noise attenuation. IEEE Transact. Geosci. RemoteSens., 55: 4696-4711.
- Fomel, S. and Liu, Y., 2010,. Seislet transform and seislet frame. Geophysics, 75:V25-V38.
- Gan, S., Chen, Y., Wang, S., Chen, X., Huang, W. and Chen, H., 2016a. Compressivesensing for seismic data reconstruction using a fast projection onto convex setsalgorithm based on the seislet transform. J. Appl. Geophys., 130: 194-208.
- Gan, S., Wang, S., Chen, Y. and Chen, X., 2016b. Simultaneous-source separation usingiterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-201.
- Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016c. Separation of simultaneoussources using a structural-oriented median filter in the flattened dimension. Comput.Geosci., 86: 46-54.
- Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015. Dealiased seismic datainterpolation using seislet transform with low-frequency constraint. IEEE Geosci.Remote Sens. Lett., 12: 2150-2154.
- Huang, W., Wang, R., Chen, X. and Chen, Y., 2017a. Double least squares projectionsmethod for signal estimation. IEEE Transact. Geosci. Remote Sens., 55: 4111-4129.
- Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannel singularspectrum analysis for 3D random noise attenuation. Geophysics, 81(4): V261-V270.
- Huang, W., Wang, R., Yuan, Y., Gan, S. and Chen, Y., 2017b. Signal extraction usingrandomized-order multichannel singular spectrum analysis. Geophysics, 82(2):V59-V74.
- Huang, W., Wang, R., Zhang, D., Zhou, Y., Yang, W. and Chen, Y., 2017c.
- Mathematical morphological filtering in a rotating coordinate system for coherentnoise attenuation. Geophysics, 82: V369-V384. doi: 10.1190/geo2016-0580.1.
- Kong, D., Peng, Z., He, Y. and Fan, H., 2016. Seismic random noise attenuation usingdirectional total variation in the shearlet domain. J. Seismic Explor., 25: 321-338.
- Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequencynoise suppression based on mathematical morphology in microseismic monitoring.Geophysics, 81(3): V159-V 167.
- Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detection188 morphology in microseismic monitoring. J. Appl. Geophys., 133:39-49.
- Liu, C., Wang, D., Hu, B. and Wang, T., 2016a. Seismic deconvolution with shearletsparsity constrained inversion. J. Seismic Explor., 25: 433-445.
- Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-xregularized nonstationary autoregression. Geophysics, 77: V61-V69.
- Liu, W., Cao, S. and Chen, Y., 2016b. Applications of variational mode decomposition inseismic time-frequency analysis. Geophysics, 81(5): V365-V378.
- Liu, W., Cao, S., Chen, Y. and Zu, S., 2016c. An effective approach to attenuate randomnoise based on compressive sensing and curvelet transform. J. Geophys. Engineer.,13: 135-145.
- Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016d. One-step slope estimationfor dealiased seismic data reconstruction via iterative seislet thresholding. IEEEGeosci. Remote Sens. Lett., 13: 1462-1466.
- Liu, W., Cao, S., Liu, Y. and Chen, Y., 2016e. Synchrosqueezing transform and itsapplications in seismic data analysis. J. Seismic Explor., 25: 27-44.
- Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising andinterpolation of 2D seismic data using data-driven non-negative dictionary learning.Sign. Process., 141: 309-321.
- Siahsar, M.A.N., Gholtashi, $., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-drivenmulti-task sparse dictionary learning for noise attenuation of 3D seismic data.
- Geophysics, 82(6): V385-V396. doi: 10.1190/geo2017-0084.1.
- Siahsar, M.A.N., Gholtashi, $., Olyaei, E., Chen, W. and Chen, Y., 2017c. Simultaneousdenoising and interpolation of 3D seismic data via damped data-driven optimalsingular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
- Sun, W. and Wang, H., 2016. Water-layer-related demultiple method using constraints inthe sparse, local tau-p domain. J. Seismic Explor., 25: 463-483.
- Wu, J., Wang, R., Chen, Y., Zhang, Y., Gan, S. and Zhou, C., 2016. Multiples attenuationusing shaping regularization with seislet domain sparsity constraint. J. SeismicExplor., 25: 1-9.
- Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016. Simultaneous sources separation viaan iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13:1915-1919.
- Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterativedeblending of simultaneous source seismic data using high-order radon transform.J. Appl. Geophys., 139: 79-90.
- Yang, W., Wang, R., Wu, J., Chen, Y., Gan, S. and Zhong, W., 2015. An efficient andeffective common reflection surface stacking approach using local similarity andplane-wave flattening. J. Appl. Geophys., 117: 67-72.