ARTICLE

Comparison of frequency-band selection strategies for 2D time-domain acoustic waveform inversion

XIAONA MA1,2 ZHIYUAN LI1 SHANHUI XU1 PEI KE3 GUANGHE LIANG1
Show Less
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, P.R. China. maxiaona@mail.iggcas.ac.cn,
University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,
BGP Inc., China National Petroleum Corporation, Hebei Zhuozhou 072751, P.R. China.,
JSE 2017, 26(6), 499–519;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ma, X., Li, Z., Xu, S., Ke, P. and Liang, G., 2017. Comparison of frequency-band selection strategies for 2D time domain acoustic waveform inversion. Journal of Seismic Exploration, 26: 499-519. Full waveform inversion (FWD is a promising model-building technology to recover subsurface information. However, it is easy to fall into local minima when applying this method because of the lack of a low-frequency component in seismic data. To mitigate this problem, multi-scale method for the time domain has been proposed. With this method, we perform the inversion sequentially from low- to high-frequency groups, and we set the velocity model inverted at the previous scale as an initial velocity model for the next higher frequency group. In this study, we mainly compare several frequency-band selection strategies for FWI in time domain, including individual-grouping methods 1 and 2, along with Bunks’ method. To verify and compare the efficiency of the above three methods, we introduce the partial-overlap and arbitrary-two grouping methods. Numerical examples for synthetic data of the Marmousi velocity model, as well as noisy data, demonstrate that multiscale inversion can attain encouraging resolution. Compared to solutions from other methods, we highlight the individual-grouping method 2 which can yield a more satisfactory velocity model. Also, numerical results imply that low frequencies are necessary in full waveform inversion.

Keywords
full waveform inversion
time-domain multiscale method
frequency-band selection strategies
References
  1. Anagaw A.Y. and M. D. Sacchi, 2014. Comparison of multifrequency selection strategies
  2. for simultaneous-source full waveform inversion. Geophysics, 79(5): R165-(181.
  3. doi: 10.1190/geo2013-0263.1.
  4. Dos Santos, A.W.G. and Pestana, R.C., 2015. Time-domain multiscale full-waveform
  5. inversion using the rapid expansion method and efficient step-length estimation.
  6. Geophysics, 80(4): R203-R216. doi:10.1190/Geo2014-0338. 1.
  7. Berkhout, A.J, 1984. Multidimensional linearized inversion and seismic migration.
  8. Geophysics, 49: 1881-1895. doi: 10.1190/1.1441601.
  9. Bérenger, J., 1994. A perfectly matched layer for the absorption of electromagnetic waves.
  10. J. Computat. Phys., 114:185-200, doi:10.1006/jeph.1994,1159.
  11. Brenders, A.J. and Pratt, R.G., 2007. Full waveform tomography for lithospheric imaging:
  12. Results from a blind test in a realistic crustal model. Geophys. J. Internat., 168:
  13. 133-151. doi: 10.1111/j.1365-246X.2006.03156.x.
  14. Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveform
  15. inversion. Geophysics, 60, 1457-1473. doi: 10.1190/1.1443880.
  16. Boonyasiriwat, C., Valasek, P., Routh, P., Cao, W., Schuster, G.T. and Macy, B., 2009.
  17. An efficient multiscale method for time-domain waveform tomography. Geophysics,
  18. 74(6): WCCS9-WCC68. doi: 10.1190/1.3151869.
  19. Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore
  20. structures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6):
  21. WCC105—WCC118. doi: 10.1190/1.3215771.
  22. Biondo, B. and Almomin, A., 2013. Tomographic full-waveform inversion (TFWI) by
  23. combining FWI and wave-equation migration velocity analysis. The Leading Edge, 32:
  24. 1074-1080, doi: 10.1190/tle3209 1074.1.
  25. Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion of
  26. seismic waveforms: Numerical results. Geophysics, 51: 1387-1403.
  27. doi: 10.1190/1.1442188.
  28. Gao, F., Levander, A., Pratt, R.G., Zelt, C.A., and Fradelizio, G.L., 2007. Waveform
  29. tomography at a groundwater contamination site. Surface reflection data. Geophysics,
  30. 72(5), G45-G55. doi: 10.1190/1.2752744.
  31. Hager, W.M. and Zhang, H.C.,2006. A survey of nonlinear conjugate gradient methods.
  32. Pacif. J. Optimizat., 2: 335-358.
  33. Hu, W.Y., Abubakar, A. and Habashy, T.M., 2009. Simultaneous multifrequency
  34. inversion of full-waveform seismic data. Geophysics, 74(2) doi:10.1190/1.3073002.
  35. Ha, W., and Shin, C., 2012. Laplace-domain full-waveform inversion of seismic data
  36. lacking low-frequency information. Geophysics, 77(5), doi:10.1190/GEO2011-0411.1.
  37. Kim, Y., Cho, H., Min, D.-J., and Shin, C., 2010. Comparison and frequency-selection
  38. strategies for 2D frequency-domain acoustic waveform inversion. Pure Appl.
  39. Geophysics, 168, 1715-1727, doi: 10.1007/s00024-010-0196-8.
  40. Lailly. P., 1983. The seismic inverse problems as a sequence of before stack migrations.
  41. In: Conf. Inverse Scattering. Theory and Application. Bednar, J.B., Redner, R.,
  42. Robinson, E. and Weglein, A. (Eds.), Soc. Industr. Appl. Math., Philadelphia. p
  43. 206-220.
  44. Liu Y.-S., 2015. Seismic wavefield modeling using the spectral element method and
  45. inversion. Ph.D. thesis, University Chinese Academy of Sciences, Beijing.
  46. Liu You-shan, Liu Shao-lin, Zhang Mei-gen et al 2012. An improved perfectly matched
  47. layer absorbing boundary condition for second order elastic wave equation. Progress in
  48. Geophysics (in Chinese), (5): 2113-2122, doi: 10.6038/j.issn.1004-2903.2012.05.036
  49. Marfurt, K., 1984. Accuracy of finite-difference and finite-elements modeling of the scalar
  50. and elastic wave equation. Geophysics, 49: 533-549. doi:10.1190/1.1441689.
  51. Mora, P.R., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data.
  52. Geophysics, 52: 1211-1228. doi: 10.1190/1.1442384.
  53. Min, D.-J., Shin, J., Shin, C., 2015. Application of the least-squares inversion method:
  54. Fourier series versus waveform inversion. Journal of Applied Geophysics, 122, 62-73,
  55. doi:10.1016/j.jappgeo.2015.08.006.
  56. Ma, X., Li, Z., Gu, B.-L., Ke, P. and Liang, G.-H., 2015. Comparison and analysis of
  57. several optimization finite-differencing schemes in 2D acoustic frequency-domain
  58. numerical modeling. Progr. Geophys. (in Chinese), 30: 878-888,. doi:
  59. 6038/pg20150254.
  60. Nocedal, J. and Wright, S.J., 1999. Numerical Optimization. Springer series in operations
  61. research and financial engineering. Springer-Verlag, Berlin.
  62. Nocedal, J., and Wright, S.J., 2006. Numerical Optimization. 2nd edition. Springer-Verlag,
  63. Berlin.
  64. Operto, S., Virieux, J., Amestoy, P., L’Excellent, J., Giraud, L., and Ali, H., 2007a. 3D
  65. finite-difference frequency-domain modeling of visco-acoustic wave propagation using
  66. a massively parallel direct solver: A feasibility study. Geophysics, 72(5):
  67. SM195-SM211. doi: 10.1190/1.2759835
  68. Operto, S., Virieux, J., and Sourbier, 2007b. Documentation of FWT2D program (verison
  69. 8), Frequecy domain full-waveform modeling/inversion of wide-aperture seismic data
  70. for imaging 2D acoustic media. Technical report N 007-SESMICCOPE project.
  71. Pratt, R. G., C. Shin, and Hicks, G. J., 1998. Gauss-Newton and full Newton methods in
  72. frequency-space seismic waveform inversion. Geophysics, 133: 341-362.
  73. doi: 10.1046/j.1365-246X.1998.00498.x.
  74. Pratt, R.G, 1999. Seismic waveform inversion in the frequency domain, Part I: Theory and
  75. verification in a physical scale model. Geophysics, 64: 888-901.
  76. doi: 10.1190/1.1444597.
  77. Plessix, R., 2006. A review of the adjoin-state method for computing the gradient of a
  78. functional with geophysical applications. Geophys. Journal International, 167(2),
  79. 495-503, doi: 10.1111/j.1365-246X.2006.02978.x.
  80. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., and Aversana, P., 2004.
  81. Multiscal imaging of complex structures from multifold wide-aperture seismic data by
  82. frequency-domain full waveform tomography. Geophysical J. Internat., 159:
  83. 1032-1056. doi: 10.111 1/j.1365-246X.2004.02442.x.
  84. Sirgue, L., and Pratt, R. G., 2004. Efficient waveform inversion and imaging: A strategy
  85. for selecting temporal frequencies. Geophysics, 69: 231-248.
  86. doi: 10.1190/1.1649391.
  87. Shin, C., and Min, D.-J., 2006. Waveform inversion using a logarithmic wavefield.
  88. Geophysics, 71(3), R31-R42. doi: 10.1190/1.2194523.
  89. Shin, C., and Cha, Y.-H., 2008. Waveform inversion in the Laplace domain. Geophys. J.
  90. Internat., 173: 922-931. doi: 10.1111/j.1365-246X.2008.03768.x.
  91. Symes, W.W., 2008. Migration velocity analysis and waveform inversion. Geophys.
  92. Prosp., 56: 765-790. doi: 10.1111/j.1365-2478.2008.00698.x.
  93. Shin, C. and Cha, Y.-H., 2009. Waveform inversion in the Laplace-Fourier domain.
  94. Geophys. J. Internat., 177: 1067-1079. doi: 10.1111/j.1365-246X.2009.04102.x.
  95. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation.
  96. Geophysics, 49: 1259-1266. doi: 10.1190/1.1441754.
  97. Vigh, D. and Starr, E.W., 2008. Comparisons for waveform inversion, time domain or
  98. frequency domain? Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas:
  99. 1890-1894.
  100. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration.
  101. Geophysics, 74(6), WCC1-WCC26, doi: 10.1190/1.3238367.
  102. Warner, M., and Guasch, L., 2014. Adaptive waveform inversion: Theory. 84th Annual
  103. International Meeting, SEG, Expanded Abstracts, 1089-1093.
  104. Xie, X., 2013. Recover certain low-frequency information for full waveform inversion.
  105. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston, 1053-1057.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing