ARTICLE

Design and application of a Mini-SOSIE system

ZUBIN CHEN NA LI YADONGYANG ZHU YANFENG ZHANG YUN LONG XIAOZHE WEN FENG SUN*
Show Less
Key Laboratory of Geo-Exploration Instrumentation of Ministry of Education (Jilin University), Changchun 130061, P.R. China. sunfeng@jlu.edu.cn,
College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, P.R. China.,
JSE 2017, 26(6), 521–539;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, Z., Li, N., Zhu, Y., Zhang, Y, Long, Y., Wen, X. and Sun, F., 2017. Design and application of a Mini-SOSIE system. Journal of Seismic Exploration, 26: 521-539. The main objectives of this study were to (1) design and develop a Mini-SOSIE system, and (2) assess its performance at a test site. Mini-SOSIE is a light, portable, and nondestructive vibrator that is useful for shallow seismic exploration. During normal operation, the frequency of the vibrator is relatively periodic, leading the autocorrelation to have multiple peaks that affect the correlated shot record; i.e., there is strong interference and thus low resolution and signal-to-noise ratio (SNR). However, randomly varying the throttle using a control system can overcome the periodic nature of the vibrations. To achieve such control, we designed the system and its electronic controller, introducing a pseudo-random control scheme to the Mini-SOSIE system. Field tests verified the validity and efficacy of the designed system. The autocorrelation of the reference trace was better; its SNR was improved by 16.3 dB with respect to normal operation. The new Mini-SOSIE system design provides an alternative for shallow seismic exploration and small engineering exploration. It is also a stable reliable source that can emit a stable repeatable source waveform, which can provide high- quality field data and improve the performance of seismic exploration in the first step.

Keywords
Mini-SOSIE
pseudorandom
resolution
SNR
References
  1. Barbier, M.G., Bondon, P., Mellinger, R. and Viallix, J.R., 1976. Mini-Sosie for land
  2. seismology. Geophys. Prosp., 24: 518-527.
  3. Barbier, M.G., 1983. The Mini-SOSIE method. Internat. Human Resour. Develop. Corp.,
  4. Boston: 96 pp.
  5. Becquey, M., 2002. Pseudo-random coded simultaneous vibroseismics. Expanded Abstr.,
  6. 2nd Ann. Internat. SEG Mtg., Salt Lake City.
  7. Chang, X. and Liu, Y.K., 2010. Seismic profile of the Huangzhuang-Gaoliying fault in
  8. Beijing by Mini-SOSIE method. Expanded Abstr., 70th Ann. Intenat. SEG Mtg.
  9. Calgary, AB, 29: 1970-1974.
  10. Cunningham, A.B., 1979. Some alternate vibrator signals. Geophysics, 44: 1901-1921.
  11. Dean, T., 2012. Establishing the limits of vibrator performance - Experiments with
  12. Pseudorandom Sweeps. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las
  13. Vegas.
  14. Dean, T., 2014. The use of pseudorandom sweeps for vibroseis surveys. Geophys. Prosp.,
  15. 62: 50-74.
  16. Driml, K., Reveleigh, M. and Bartlett, K., 2001. Mini-SOSIE-successful shallow 3D
  17. seismic data acquisition in an environmentally sensitive area. Extended Abstr.,
  18. 11th ASEG Mtg., Brisbane, Aug 1 一 4.
  19. Feroci, M., Balia, R., Bosman, C., Cardarelli, E., Deidda, G. and Orlando, L., 2000.
  20. Some considerations on shallow seismic reflection surveys. J. Appl. Geophys., 45:
  21. 127-139.
  22. Giustiniani, M., Accaino, F., Picotti, S. and Tinivella, U., 2008. Characterization of the
  23. shallow aquifers by high-resolution seismic data. Geophys. Prosp., 56: 655-666.
  24. Maxwell, P., Gibson, J., Egreteau, A., Forest, L., Baeten, G. and Sallas, J., 2010.
  25. Extending low frequency bandwidth using Pseudorandom Sweeps. Expanded Abstr.,
  26. 80th Ann. Internat. SEG Mtg., Denver, 29: 101-105.
  27. Nasreddin, H., Dean, T. and Iranpour, K., 2012. The use of Pseudorandom Sweeps to
  28. reduce interference noise in simultaneous vibrosies surveys. Extended Abstr., 22nd
  29. Internat. ASEG Mtg., Brisbane.
  30. Peinado, A. and Subater Fuster, A., 2013. Generation of Pseudorandom binary
  31. sequences by means of Linear Feedback Shift Register (LFSRs) with dynamic
  32. feedback. Math. Comput. Model., 57: 2596-2604.
  33. Pratt, T.L., Shaw, J.H. and Dolan, J.F., 2002. Shallow seismic imaging of folds above the
  34. Puente Hills blind-thrust fault, Los Angeles, California. Geophys. Res. Lett., 9(29):
  35. Sallas, J.J., Gibson, J.B., Lin, F., Winter, O., Montgomery, B. and Nagarajappa, P.,
  36. Broadband vibroseis using simultaneous Pseudorandom Sweeps. Expanded
  37. Abstr., 78th Ann. Internat. SEG Mtg, Las Vegas, 27(1): 100-103.
  38. Sallas, J.J., Gibson, J. Maxwell, P. and Lin, F., 2011. Pseudorandom Sweeps for
  39. simultaneous sourcing and low-frequency generation. The Leading Edge. 30: 1162-
  40. Sarwate. D.V. and Pursley, M.B., 1980. Crosscorrelation properties of pseudorandom
  41. and related sequences. Proc. IEEE, 68: 1554.
  42. Sexton, J.L., Henson, H.,Jr., Dial, P. and Shedlock, K., 1992. Mini-Sosie high-resolution
  43. seismic reflection profiles along the Bootheel Lineament in the New Madrid seismic
  44. zone. Seismol. Res. Lett., 67: 297-307.
  45. Sexton, J.L. and Jones, P.B., 1988. Mini-SOSIE high-resolution reflection survey of — the
  46. Cottonwood Grove Fault in Northwestern Tennessee. Bull. Seismol. Soc. Am., 78:
  47. 838-854.
  48. Shtivelman, V., 2001. Shallow water seismic surveys for site investigation in the Haifa
  49. port extension area, Israel. J. Appl. Geophys., 46: 143-158.
  50. Stasev, Y.V., Kuznetsov, A.A. and Nosik, A.M., 2007. Formation of Pseudorandom
  51. sequences with improved autocorrelation properties. Cybernet. Sys. Anal., 43: 1- 11.
  52. Strong, S.R., 2003. Numerical Modeling of Pseudorandom Seismic Sources. Honors
  53. Thesis, University of Queensland, Brisbane.
  54. Strong, S.R. and Hearn, S., 2004. Numerical modeling of pseudo-random land seismic
  55. sources. Extended Abstr., 14th ASEG Mtg., Melbourne: 1-4.
  56. Wang, C.Y., 2002. Detection of a recent earthquake fault by the shallow reflection
  57. seismic method. Geophysics, 67: 1465-1473.
  58. Yordkayhun, S., Ivanova, A., Giese, R., Juhlin, C. and Cosma, C., 2009. Comparison of
  59. surface seismic sources at the CO2SINK site, Ketzin, Germany. Geophys. Prosp., 57:
  60. 125-139.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing