Robustness of Laplace domain waveform inversions to cycle skipping

Ryu, D., Kim, A., Ha, W. and Shin, C., 2017. Robustness of Laplace domain waveform inversions to cycle skipping. Journal of Seismic Exploration, 26: 251-266. The local minima problem introduced by cycle skipping is an important barrier for a successful waveform inversion. However, numerical examples of the Laplace-domain full waveform inversions show that we can start from simple initial models to obtain subsurface models, without the local minima problem. Although we can infer that the Laplace-domain inversion is robust to the cycle skipping problem from previous literatures, theoretical examination about the effect of cycle skipping in the Laplace domain is missing. We explain why the Laplace-domain logarithmic objective function is robust to cycle skipping by examining the effect of time shifts of seismic traces on the objective function. A test using a sine wavelet shows that the Laplace transform converts the time shift in the time domain to an amplitude change in the Laplace domain. The amplitude change due to the time shift shows monotonous variations as the amount of time shift increases. Therefore, no cycle skipping effect in the Laplace domain is evident, and the Laplace domain objective function shows a monotonous variation. Numerical examples using 1D and 2D models demonstrate that the Laplace domain objective function is robust to cycle skipping.
- Alkhalifah, T. and Choi, Y., 2012. Taming waveform inversion non-linearity through phase
- unwrapping of the model and objective functions. Geophys. J. Internat., 191: 1171-1178.
- Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F. and Wyatt, K., 1994. SEG/EAEG 3-D
- modeling project: 2nd update. The Leading Edge, 13: 949-952.
- Billette, F. and Lambaré, G., 1998. Velocity macro-model estimation from seismic reflection data
- by stereotomography. Geophys. J. Internat., 135: 671-690.
- Brenders, A. and Pratt, R., 2007. Full waveform tomography for lithospheric imaging: Results from
- a blind test in a realistic crustal model. Geophys. J. Internat., 168: 133-151.
- Brossier, R., Operto, S. and Virieux, J., 2010. Which data residual norm for robust elastic
- frequency-domain full waveform inversion? Geophysics, 75: R37.
- Bunks, C., Saleck, F., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveform inversion.
- Geophysics, 60: 1457-1473.
- Guitton, A., Symes, W., 2003. Robust inversion of seismic data using the Huber norm. Geophysics
- 68, 1310-1319.
- Ha, T., Chung, W. and Shin, C., 2009. Waveform inversion using a back-propagation algorithm
- and a Huber function norm. Geophysics, 74: R15-R24.
- Ha, W., Chung, W., Park, E. and Shin, C., 2012. 2-D acoustic Laplace-domain waveform inversion
- of marine field data. Geophys. J. Internat., 190: 421-428.
- Ha, W. and Shin, C., 2012. Laplace-domain full-waveform inversion of seismic data lacking
- low-frequency information. Geophysics, 77: R199-R206.
- Landa, E., Beydoun, W. and Tarantola, A., 1989. Reference velocity model estimation from
- prestack waveforms: Coherency optimization by simulated annealing. Geophysics, 54:
- 984-990.
- Liu, Z. and Bleistein, N., 1995. Migration velocity analysis: Theory and an iterative algorithm.
- Geophysics, 60: 142-153.
- Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics,
- 52: 1211-1228.
- Pratt, R., Shin, C. and Hicks, G., 1998, Gauss-Newton and full Newton methods in frequency-space
- seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
- Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and
- ‘verification in a physical scale model. Geophysics, 64: 888-901.
- Prieux, V., Lambaré, G., Operto, S. and Virieux, J., 2012. Building starting models for full
- waveform inversion from wide-aperture data by stereotomography. Geophys. Prosp., 61:
- 109-137.
- Pyun, S., Son, W. and Shin, C., 2010. 3D acoustic waveform inversion in the Laplace domain using
- an iterative solver. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 951-956.
- Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
- Multiscale imaging of complex structures from multifold wide-aperture seismic data by
- frequency-domain full-waveform tomography: application to a thrust belt. Geophys. J.
- Internat., 159: 1032-1056.
- 266 RYU, KIM, HA & SHIN
- Sen, M. and Stoffa, P., 1991. Nonlinear one-dimensional seismic waveform inversion using
- simulated annealing. Geophysics, 56: 1624-1638.
- Shin, C. and Cha, Y.H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat. ,
- 173: 922-931.
- Shin, C. and Ha, W., 2008. A comparison between the behavior of objective functions for waveform
- inversion in the frequency and Laplace domains. Geophysics, 73: VE119-VE133.
- Shin, C., Ha, W. and Kim, Y., 2013. Subsurface model estimation using Laplace-domain inversion
- methods. The Leading Edge, 32: 1094-1099.
- Shin, C., Koo, N.-H., Cha, Y.H. and Park, K.-P., 2010. Sequentially ordered single-frequency 2-D
- acoustic waveform inversion in the Laplace-Fourier domain. Geophys. J. Internat., 181:
- 935-950.
- Shin, J., Ha, W., Jun, H., Min, D.-J. and Shin, C., 2014. 3D Laplace-domain full waveform
- inversion using a single GPU card. Comput. Geosci., 67: 1-13.
- Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategy for
- selecting temporal frequencies. Geophysics, 69: 231-248.
- Stoffa, P.L. and Sen, M.K., 1991. Nonlinear multiparameter optimization using genetic algorithms
- - Inversion of plane-wave seismograms. Geophysics, 56: 1794-1810.
- Tarantola, A., 1984. Inversion of seismic-reflection data in the acoustic approximation. Geophysics,
- 49: 1259-1266.
- Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics.
- Geophysics, 74: WCC1-WCC26.
- Warner, M. and Guasch, L., 2014. Adaptive waveform inversion - FWI without cycle skipping -
- Theory. Expanded Abstr., 76th EAGE Conf., Amsterdam: We E106 13.
- White, D.J., 1989. Two-dimensional seismic refraction tomography. Geophys. J. Internat., 97:
- 223-245.
- Wu, R.-S., Luo, J. and Wu, B., 2014. Seismic envelope inversion and modulation signal model.
- Geophysics, 79: WA13-WA24.