ARTICLE

Robustness of Laplace domain waveform inversions to cycle skipping

DONGHYUN RYU1 AHREUM KIM1 WANSOO HA1 CHANGSOO SHIN2
Show Less
1 Department of Energy Resources Engineering, Pukyong National University, Busan, South Korea.,
2 Department of Energy Resources Engineering, Seoul National University, Seoul, South Korea.,
JSE 2017, 26(3), 251–266;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ryu, D., Kim, A., Ha, W. and Shin, C., 2017. Robustness of Laplace domain waveform inversions to cycle skipping. Journal of Seismic Exploration, 26: 251-266. The local minima problem introduced by cycle skipping is an important barrier for a successful waveform inversion. However, numerical examples of the Laplace-domain full waveform inversions show that we can start from simple initial models to obtain subsurface models, without the local minima problem. Although we can infer that the Laplace-domain inversion is robust to the cycle skipping problem from previous literatures, theoretical examination about the effect of cycle skipping in the Laplace domain is missing. We explain why the Laplace-domain logarithmic objective function is robust to cycle skipping by examining the effect of time shifts of seismic traces on the objective function. A test using a sine wavelet shows that the Laplace transform converts the time shift in the time domain to an amplitude change in the Laplace domain. The amplitude change due to the time shift shows monotonous variations as the amount of time shift increases. Therefore, no cycle skipping effect in the Laplace domain is evident, and the Laplace domain objective function shows a monotonous variation. Numerical examples using 1D and 2D models demonstrate that the Laplace domain objective function is robust to cycle skipping.

Keywords
Laplace domain
full waveform inversion
cycle skipping
References
  1. Alkhalifah, T. and Choi, Y., 2012. Taming waveform inversion non-linearity through phase
  2. unwrapping of the model and objective functions. Geophys. J. Internat., 191: 1171-1178.
  3. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F. and Wyatt, K., 1994. SEG/EAEG 3-D
  4. modeling project: 2nd update. The Leading Edge, 13: 949-952.
  5. Billette, F. and Lambaré, G., 1998. Velocity macro-model estimation from seismic reflection data
  6. by stereotomography. Geophys. J. Internat., 135: 671-690.
  7. Brenders, A. and Pratt, R., 2007. Full waveform tomography for lithospheric imaging: Results from
  8. a blind test in a realistic crustal model. Geophys. J. Internat., 168: 133-151.
  9. Brossier, R., Operto, S. and Virieux, J., 2010. Which data residual norm for robust elastic
  10. frequency-domain full waveform inversion? Geophysics, 75: R37.
  11. Bunks, C., Saleck, F., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveform inversion.
  12. Geophysics, 60: 1457-1473.
  13. Guitton, A., Symes, W., 2003. Robust inversion of seismic data using the Huber norm. Geophysics
  14. 68, 1310-1319.
  15. Ha, T., Chung, W. and Shin, C., 2009. Waveform inversion using a back-propagation algorithm
  16. and a Huber function norm. Geophysics, 74: R15-R24.
  17. Ha, W., Chung, W., Park, E. and Shin, C., 2012. 2-D acoustic Laplace-domain waveform inversion
  18. of marine field data. Geophys. J. Internat., 190: 421-428.
  19. Ha, W. and Shin, C., 2012. Laplace-domain full-waveform inversion of seismic data lacking
  20. low-frequency information. Geophysics, 77: R199-R206.
  21. Landa, E., Beydoun, W. and Tarantola, A., 1989. Reference velocity model estimation from
  22. prestack waveforms: Coherency optimization by simulated annealing. Geophysics, 54:
  23. 984-990.
  24. Liu, Z. and Bleistein, N., 1995. Migration velocity analysis: Theory and an iterative algorithm.
  25. Geophysics, 60: 142-153.
  26. Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics,
  27. 52: 1211-1228.
  28. Pratt, R., Shin, C. and Hicks, G., 1998, Gauss-Newton and full Newton methods in frequency-space
  29. seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
  30. Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and
  31. ‘verification in a physical scale model. Geophysics, 64: 888-901.
  32. Prieux, V., Lambaré, G., Operto, S. and Virieux, J., 2012. Building starting models for full
  33. waveform inversion from wide-aperture data by stereotomography. Geophys. Prosp., 61:
  34. 109-137.
  35. Pyun, S., Son, W. and Shin, C., 2010. 3D acoustic waveform inversion in the Laplace domain using
  36. an iterative solver. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 951-956.
  37. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
  38. Multiscale imaging of complex structures from multifold wide-aperture seismic data by
  39. frequency-domain full-waveform tomography: application to a thrust belt. Geophys. J.
  40. Internat., 159: 1032-1056.
  41. 266 RYU, KIM, HA & SHIN
  42. Sen, M. and Stoffa, P., 1991. Nonlinear one-dimensional seismic waveform inversion using
  43. simulated annealing. Geophysics, 56: 1624-1638.
  44. Shin, C. and Cha, Y.H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat. ,
  45. 173: 922-931.
  46. Shin, C. and Ha, W., 2008. A comparison between the behavior of objective functions for waveform
  47. inversion in the frequency and Laplace domains. Geophysics, 73: VE119-VE133.
  48. Shin, C., Ha, W. and Kim, Y., 2013. Subsurface model estimation using Laplace-domain inversion
  49. methods. The Leading Edge, 32: 1094-1099.
  50. Shin, C., Koo, N.-H., Cha, Y.H. and Park, K.-P., 2010. Sequentially ordered single-frequency 2-D
  51. acoustic waveform inversion in the Laplace-Fourier domain. Geophys. J. Internat., 181:
  52. 935-950.
  53. Shin, J., Ha, W., Jun, H., Min, D.-J. and Shin, C., 2014. 3D Laplace-domain full waveform
  54. inversion using a single GPU card. Comput. Geosci., 67: 1-13.
  55. Sirgue, L. and Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategy for
  56. selecting temporal frequencies. Geophysics, 69: 231-248.
  57. Stoffa, P.L. and Sen, M.K., 1991. Nonlinear multiparameter optimization using genetic algorithms
  58. - Inversion of plane-wave seismograms. Geophysics, 56: 1794-1810.
  59. Tarantola, A., 1984. Inversion of seismic-reflection data in the acoustic approximation. Geophysics,
  60. 49: 1259-1266.
  61. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics.
  62. Geophysics, 74: WCC1-WCC26.
  63. Warner, M. and Guasch, L., 2014. Adaptive waveform inversion - FWI without cycle skipping -
  64. Theory. Expanded Abstr., 76th EAGE Conf., Amsterdam: We E106 13.
  65. White, D.J., 1989. Two-dimensional seismic refraction tomography. Geophys. J. Internat., 97:
  66. 223-245.
  67. Wu, R.-S., Luo, J. and Wu, B., 2014. Seismic envelope inversion and modulation signal model.
  68. Geophysics, 79: WA13-WA24.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing