A quantitative evaluation method based on EMD for determining the accuracy of time-varying seismic wavelet extraction

Zhang, P., Dai, Y., Wang, R. and Tan, Y., 2017. A quantitative evaluation method based on EMD for determining the accuracy of time-varying seismic wavelet extraction. Journal of Seismic Exploration, 26: 267-292. The bandwidth and amplitude of wavelet deconvolution results are the most important indicators of accuracy for time-varying wavelets. To evaluate the accuracies of extracted seismic wavelets based on these indicators, we propose a quantitative evaluation method based on empirical mode decomposition (EMD), which offers the advantages of adaptive decomposition and multi-scale analysis and can highlight local characteristics. First, time-varying seismic wavelets are extracted from a non-stationary seismogram and subjected to deconvolution or reflectivity inversion. Then, to appraise these wavelets, the amplitude spectrum from the deconvolution or inversion results is decomposed into multi-layer intrinsic mode functions (IMF) using EMD. Next, an evaluation parameter is constructed by summing the number of local extremes in all IMFs and normalizing this sum with respect to the number of frequency points in the amplitude spectrum. Larger values of this parameter indicate more accurate extracted wavelets. When applied to both synthetic and field-collected seismic data, the proposed method performs better than conventional methods for evaluating the accuracy of time-varying wavelet extraction.
- Arild, B. and Henning, O., 2003. Bayesian wavelet estimation from seismic and well data.
- Geophysics, 68: 2000-2009. doi: 10.1190/1.1635053
- Chen, J., Dai, Y.S., Zhang, Y.N., Wei, Y.Q. and Ding, J.J., 2013. Summary of the evaluation
- approaches for seismic wavelet pick-up based on higher order statistics. Oil Geophys.
- Prosp., 48: 497-503. doi:10.13810/j.cnki.issn. 1000-7210.2013.03.024.
- Dai, Y.S., Zhang, M.M., Zhang, Y.N., Ding, J.J. and Wang, R.R., 2015. Time-variant
- mixed-phase seismic wavelet estimation based on spectral modeling in the time-frequency
- domain. Oil Geophys. Prosp., 50: 830-838.
- doi: 10. 13810/j.cnki.issn. 1000-7210.2015.05.004.
- 292 ZHANG, DAI, WANG & TAN
- Economou, N. and Vafidis, A., 2010. Spectral balancing GPR data using time-variant bandwidth
- in the t-f domain. Geophysics, 75: J19-J27. doi:10.1190/1.3374464.
- Han, J. and van der Baan, M., 2013. Empirical mode decomposition for seismic time-frequency
- analysis. Geophysics, 78: 09-019. doi:10.1190/geo2012-0199. 1.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q.A., Yen, N.C., Tung, C.C.
- and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for
- nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Mathemat., Phys.
- Engineer. Sci., 454: 903-995. doi:10.1098/rspa. 1998.0193.
- Li, G.F., Liu, Y., Zheng, H. and Huang, W., 2015. Absorption decomposition and
- compensation via a two-step schem. Geophysics, 80: V145-V155.
- doi: 10. 1190/ge02015-0038.1.
- Longbottom, J., Walden, A.T. and White, R.E., 1988. Principles and application of maximum
- Kurtosis phase estimation. Geophys. Prosp., 36: 115-138.
- doi: 10.1111/j. 1365-2478. 1988.tb02155.x.
- Margrave, G.F., Lamoureux, M.P. and Henley, D.C., 2011. Gabor deconvolution: Estimating
- reflectivity by nonstationary deconvolution of seismic data. Geophysics, 76: W15-W30.
- doi: 10.1190/1.3560167.
- Matsuoka, T. and Ulrych, T.J., 1984. Phase estimation using the bispectrum: Proc. IEEE, 72:
- 1403-1411. doi:10.1109/PROC. 1984. 13027.
- Oliveira, S.A.M. and Lupinacci, W.M., 2013. Li-norm inversion method for deconvolution in
- attenuating media. Geophys. Prosp., 61: 771-777. doi:10.1111/1365-2478. 12002.
- Porsani, M.J., Ursin, B. and Silva, M.G., 2013. Dynamic estimation of reflectivity by
- minimum-delay seismic trace decomposition. Geophysics, 78: V109-V117.
- doi: 10. 1190/ge02012-0077. 1.
- Radad, M., Gholami, A. and Siahkoohi, H.R., 2015. S-transform with maximum energy
- concentration: Application to non-stationary seismic deconvolution. J. Appl. Geophys., 118:
- 155-166. doi:10.1016/j.jappgeo.2015.04.010.
- Rietsch, E., 1997. Euclid and the art of wavelet estimation, Part I: Basic algorithm for noise-free
- data. Geophysics, 62: 1931-1938. doi:10.1190/1.1444293.
- Rosa, A.L. and Ulrych, T.J., 1991. Processing via spectral modeling. Geophysics, 56: 1244-1251.
- doi: 10.1190/1.1443144.
- Sajid, M. and Ghosh, D., 2013. A fast and simple method of spectral enhancement. Geophysics,
- 79: V75-V80. doi: 10.1190/ge02013-0179.1.
- Sun, X.K., Sun Z.D., Xie, H.W., Liu, L.F., Tao, P. and Wang, Y.G., 2015. A nonstationary
- perspective on sparse deconvolution. Oil Geophys. Prosp., 50: 260-266.
- doi: 10. 13810/j.cnki.issn. 1000-7210.2015.02.009.
- van der Baan, M., 2008. Time-varying wavelet estimation and deconvolution by Kurtosis
- maximization. Geophysics, 73: 11-18. doi:10.1190/1.2831936.
- Velis, D.R., 2008. Stochastic sparse-spike deconvolution. Geophysics, 73: RI-R9.
- doi: 10.1190/1.2790584.
- Wang, L.L., Gao, J.H., Zhao, W. and Jiang, X., 2012. Enhancing resolution of nonstationary
- seismic data by molecular-Gabor transform. Geophysics, 78: V31-V34.
- doi: 10. 1190/ge02011-0450.1.
- White, R.E., 1988. Maximum Kurtosis phase correction. Geophys. J., 95: 371-389.
- doi: 10.1111/j.1365-246X.1988.tb00475.x.
- Yuan, S.Y. and Wang, S.X., 2011. Influence of inaccurate wavelet phase estimation on seismic
- inversion. Appl. Geophys., 8: 48-59. doi:10.1007/s11770-011-0273-5.
- Zhang, G., Li, Y., Rong, J. and Cai, Z., 2011. Compensation for stratigraphic absorption of
- seismic attenuation based on the improved generalized S-transform. Extended Abstr., 73rd
- EAGE Conf., Vienna. doi:10.3997/2214-4609.20149195.
- Zhou, H.L., Tian, Y.M. and Ye, Y., 2014. Dynamic deconvolution of seismic data based on
- generalized S-transform. J. Appl. Geophys., 108: 1-11. doi:10.1016/j.jappgeo.2014.06.004.