ARTICLE

Rough-sea deghosting of single-sensor seismic data using the knowledge of the sea surface shape

ENDRIAS G. ASGEDOM OKWUDILI C. ORJI WALTER SÖLLNER
Show Less
PGS Geophysical AS, Oslo, Norway.,
JSE 2017, 26(2), 105–123;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Asgedom, E.G., Orji, O.C. and Séllner, W., 2017. Rough-sea deghosting of single-sensor seismic data using the knowledge of the sea surface shape. Journal of Seismic Exploration, 26: 105-123. Accurate receiver-side deghosting of marine seismic data can be performed for any sea surface condition when both pressure and vertical particle velocity information is available. However, conventional (hydrophone-only) marine acquisition delivers pressure-only data so additional information is required to perform proper deghosting. Here, we propose to use the shape of the sea surface above the receivers as additional information and formulate an inversion-based method to perform the deghosting. Deghosting pressure-only data from rough weather conditions using the inversion-based method is validated with both synthetic and field data examples. The effects of the sea surface roughness, the streamer depth and the noise in the input data are all analysed. Quantitative comparison of the inversion-based method with traditional flat sea surface deghosting shows the superiority of the inversion-based method for any sea surface condition.

Keywords
rough sea surface
scattering
receiver-side deghosting
single-sensor deghosting
inversion
spectral division
marine seismic
References
  1. Amundsen, L., 1993. Wavenumber-based filtering of marine point-source data. Geophysics, 58:
  2. 1335-1348.
  3. Amundsen, L., 2001. Elimination of free-surface related multiples without need of the source
  4. wavelet. Geophysics, 66: 327-341.
  5. Amundsen, L., Rosten, T., Robertsson, J.O.A. and Kragh, E., 2005. Rough-sea deghosting of
  6. streamer seismic data using pressure gradient approximations. Geophysics, 70: vl-v9.
  7. Asgedom, E.G., Orji, O.C. and Sdllner, W., 2014a. Pressure normal derivative extraction for
  8. arbitrarily shaped surfaces. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver:
  9. 4243-4247.
  10. Asgedom, E.G., Orji, O.C. and Séllner, W. 2014b. Methods and systems to separate wavefields
  11. using pressure wavefield data. Patent application number: US 2015/0301210 Al. Filed
  12. 23.2014
  13. Asgedom, E.G., Orji, O.C., Kltiver, T., Tabti, H. and Sdllner, W., 2016. On broadband data and
  14. rough sea surface receiver deghosting. Extended Abstr., 78th EAGE Conf., Vienna: Tu
  15. SRS3 03
  16. Bar, F.J. and Sanders, J.1., 1989. Dual-sensor summation of noisy ocean-bottom data. Expanded
  17. Abstr., 59th Ann. Internat. SEG Mtg., Dallas: 653-656.
  18. Caprioli, P., Izdemir, K., van Manen, D.J., Mahat, S., Izbek, A., Kragh, E. and Christie, P.,
  19. Combination of multi-component streamer pressure and vertical particle velocity -
  20. Theory and application to data. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las
  21. Vegas: 1-5.
  22. Carlson, D., Long, A., Sdllner, W., Tabti, H., Tenghamn, R. and Lunde, N., 2007. Increased
  23. resolution and penetration from a towed dual-sensor streamer. First Break, 25: 71-77.
  24. Claerbout, J.F., 1976. Fundamentals of Geophysical Data Processing. McGraw-Hill, Inc., New
  25. York.
  26. Day, A., Kliiver, T., Sdllner, W., Tabti, H. and Carlson, D. 2013. Wavefield-separation methods
  27. for dual-sensor towed-streamer data. Geophysics, 78: WA55-WA70.
  28. Fokkema, J.T. and van den Berg, P.M. 1993. Seismic applications of acoustic reciprocity. Elsevier
  29. Science Publishers, Amsterdam.
  30. Grion, S., Telling, R. and Holland, $., 2016. Rough sea estimation for phase-shift de-ghosting.
  31. Expanded Abstr., 86th Ann. Internat. SEG Mtg., Dallas: 5129-5133.
  32. Laws, R. and Kragh, E., 2006. Sea surface shape derivation above the seismic streamer. Geophys.
  33. Prosp., 54: 817-828.
  34. Lindsey, J.P., 1960. Elimination of seismic ghost reflections by means of a linear filter. Geophysics,
  35. 25: 130-140.
  36. Orji, O.C., Sdllner, W. and Gelius, L.J., 2010. Imaging the sea surface using a dual-sensor towed
  37. streamer, Geophysics, 75: V111-V118.
  38. Orji, O.C., Sdllner, W. and Gelius, L.J., 2011. Effects of time-varying sea surface in marine
  39. seismic data. Geophysics, 77: 33-43.
  40. Robinson, E.A. and Treitel, S., 2008. Digital Imaging and Deconvolution: The ABCs of Seismic
  41. ; Exploration and Processing. SEG, Tulsa, OK.
  42. Robertsson, J.O.A. and Kragh, E., 2002. Rough-sea deghosting using a single streamer and a
  43. pressure gradient approximation. Geophysics, 67: 2005-2011.
  44. Thorsos, E., 1988. The validity of the Kirchhoff approximation for rough surface scattering using
  45. a Gaussian roughness spectrum. J. Acoust. Soc. Am., 83: 78-92.
  46. Wapenaar, C.P.A., Herrmann, P., Verschuur, D.J. and Berkhout, A.J., 1990. Decomposition of
  47. multicomponent seismic data into primary P- and S-wave responses. Geophys. Prosp., 38:
  48. 633-661.
  49. DEGHOSTING OF SINGLE-SENSOR DATA 121
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing