ARTICLE

Least-squares reverse-time migration toward “true” reflectivity

Hao Zhang1 Qiancheng Liu1 Jun Hao2
Show Less
1 Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China, P.R. China,
2 Research Institute of Petroleum Exploration & Development, PetroChina, Qinghai, P.R. China,
JSE 2017, 26(2), 183–198;
Submitted: 16 February 2016 | Accepted: 10 January 2017 | Published: 1 April 2017
© 2017 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhang, H., Liu, Q. and Hao, J., 2017. Least-squares reverse-time migration toward 'true' reflectivity. Journal of Seismic Exploration, 26: 183-198. Conventional least-squares reverse time migration (LSRTM) usually aims to improve the quality of seismic image, by removing the acquisition footprint, suppressing migration artifacts, and enhancing resolution. We find that the conventional reflectivity defined in the LSRTM is related to the normal-incidence reflection coefficient and the background velocity . Compared with the defined reflectivity, our inverted result is approximate. With reflected data, LSRTM is mainly sensitive to impedance perturbations. According to an approximate relationship between them, we reformulate the perturbation-related system into a pseudo reflection-coefficient related one. Then, we seek the inverted image through linearized iteration. With the assumption that the density varies gradually compared to the migration velocity, only the knowledge of the velocity is required, although the reflected waves are produced at impedance discontinuities. We validate our scheme using the 2D Marmousi synthetic dataset.

Keywords
LSRTM
linear inversion
normal-incidence reflection coefficient
References
  1. Beylkin, G., Oristaglio, M. and Miller, D., 1985. Spatial resolution of migration algorithms.Acoust. Imag., 14: 155-168.
  2. Claerbout, J.F., 1992. Earth Soundings Analysis. Processing Versus Inversion. Blackwell SciencePubications, Oxford.
  3. Clapp, M.L., Clapp, R.G. and Biondi, B.L., 2005. Regularized least-squares inversion for 3-Dsubsalt imaging. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1814-1817.
  4. Dai, W. and Schuster, G.T., 2013. Plane-wave least-squares reverse-time migration. Geophysics,78(4): S165-S177.
  5. Dutta, G. and Schuster, G.T., 2014. Attenuation compensation for least-squares reverse timemigration using the visco-acoustic wave-equation. Geophysics, 79(6): 1-S262.
  6. Guitton, A., Valenciano, A., Bevc, D. and Claerbout, J., 2007. Smoothing image condition forshot-profile migration. Geophysics, 72(3): 9-S154.
  7. Huang, Y. and Schuster, G.T., 2012. Multisource least-squares migration of marine streamer dataand land data with frequency-division encoding. Geophys. Prosp., 60: 663-680.
  8. Kaplan, S.T., Routh, P.S. and Sacchi, M.D., 2010. Derivation of forward and adjoint operators forleast-squares shot-profile split-step migration. Geophysics, 75(6): 5-S235.
  9. Kuehl, H. and Sacchi, M.D., 2002. Robust AVP estimation using least-squares wave-equationmigration. Expanded Abstr., 72nd Ann. Internat. SEG Mtg., Salt Lake City: 281-284.
  10. Mora, P.. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.Geophysics, 52: 1211-1228.
  11. Mora, P., 1989. Inversion = migration + tomography. Geophysics, 54: 1575-1586.
  12. Lailly, P., 1984. The seismic inverse problem as a sequence of before stack migrations. Conf.
  13. Inverse Scatter., Theory and Application. Soc. Industr. Appl. Mathemat., 15: 206-220.
  14. Nemeth, T., Wu, C. and Schuster, G.T.. 1999. Least-squares migration of incomplete reflectiondata. Geophysics, 64: 208-221.
  15. Plessix, R.E., 2006. A review of the adjoint-state method for computing the gradient of a functionalwith geophysical applications. Geophys. J. Internat., 167: 495-503.
  16. Plessix, R.E. and Li, Y., 2013. Waveform acoustic impedance inversion with spectral shaping.Geophys. J. Internat., 195: 301-314.
  17. Schuster, G.T., 1993. Least-squares crosswell migration. Expanded Abstr., 63rd Ann. Internat. SEGMtg., Washington D.C.: 110-113.
  18. Tan, S. and Huang, L., 2014. Least-squares reverse-time migration with a wavefield-separationimaging condition and updated source wavefields. Geophysics, 79(5): 5-S205.
  19. Tang. Y., 2008. Wave-equation Hessian by phase encoding. Expanded Abstr., 78th Ann. Internat.SEG Mtg., Las Vegas: 2201-2205.
  20. Ten Kroode, F., 2012. A wave-equation-based Kirchhoff operator. Inverse Probl., 28: 1-28.
  21. Virieux, J., 1986. P-SV wave propagation in heterogeneous media, velocity-stress finite differencemethod. Geophysics, 51: 889-901.
  22. Virieux. J. and Operto. S., 2009, An overview of full-waveform inversion in exploration geophysics.Geophysics, 74(6): WCC127-WCC152.
  23. Wang, J., Kuehl, H. and Sacchi, M.D., 2005. High-resolution wave-equation AVA imaging:
  24. Algorithm and tests with a data set from the Western Canadian Sedimentary Basin.Geophysics, 70(5): -S99.
  25. Wang, J. and Sacchi, M.D., 2007. High-resolution wave equation AVP imaging with sparsenessconstraints. Geophysics, 72(1): S11-S18.
  26. Zhang, Y., Ratcliffe, A., Roberts, G. and Duan, L., 2014. Amplitude-preserving reverse timemigration: From reflectivity to velocity and impedance inversion. Geophysics, 79(6):1-S283.
  27. Zhang, Y., Duan, L. and Xie, Y., 2015. A stable and practical implementation of least-squaresreverse time migration. Geophysics, 80(1): V23-V31.196 ZHANG, LIU & HAO
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing