ARTICLE

Kirchhoff prestack depth migration in simple models with differently rotated elasticity tensor: orthorhombic and triclinic anisotropy

VÁCLAV BUCHA
Show Less
Department of Geophysics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2, Czech Republic. bucha@seis.karlov.mff.cuni.cz,
JSE 2017, 26(1), 1–24;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bucha, V., 2017. Kirchhoff prestack depth migration in simple models with differently rotated elasticity tensor: orthorhombic and triclinic anisotropy. Journal of Seismic Exploration, 26: 1-24. We use ray-based Kirchhoff prestack depth migration to calculate migrated sections in simple anisotropic homogeneous velocity models in order to demonstrate the impact of rotation of the tensor of elastic moduli on migrated images. The recorded wave field is generated in models composed of two homogeneous layers separated by a curved interface. The anisotropy of the upper layer is orthorhombic or triclinic with the rotation of the tensor of elastic moduli. We apply Kirchhoff prestack depth migration to single-layer velocity models with orthorhombic or triclinic anisotropy with a differently rotated tensor of elastic moduli. We show and discuss the errors of the migrated interface caused by incorrect velocity models used for migration. The study is limited to P-waves.

Keywords
3D Kirchhoff prestack depth migration
anisotropic velocity model
rotation of the tensor of elastic moduli
general elastic anisotropy
orthorhombic anisotropy
triclinic anisotropy
References
  1. Alkhalifah, T. and Larner, K., 1994. Migration error in transversely isotropic media. Geophysics,
  2. 59, 1405-1418. 有
  3. Audebert, F. and Dirks, V., 2006. TTI anisotropic depth migration: What tilt estimate should we
  4. use? Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans.
  5. Ball, G., 1995. Estimation of anisotropy and anisotropic 3-D prestack depth migration, offshore
  6. Zaire. Geophysics, 60: 1495-1513.
  7. 24 BUCHA
  8. Behera, L. and Tsvankin, I., 2009. Migration velocity analysis for tilted transversely isotropic
  9. media. Geophys. Prospect., 57: 13-26.
  10. Bucha, V., 2012. Kirchhoff prestack depth migration in 3-D simple models: comparison of triclinic
  11. anisotropy with simpler anisotropies. Stud. Geophys. Geod., 56: 533-552.
  12. Bucha, V., 2013a. Kirchhoff prestack depth migration in velocity models with and without vertical
  13. gradients: Comparison of triclinic anisotropy with simpler anisotropies. In: Seismic Waves
  14. in Complex 3-D Structures, Report 23, pp. 45-59, Dep. Geophys., Charles Univ., Prague.
  15. Bucha, V., 2013b. Kirchhoff prestack depth migration in velocity models with and without rotation
  16. of the tensor of elastic moduli: Poorly displayed part of migrated interface in correct model
  17. with triclinic anisotropy. In: Seismic Waves in Complex 3-D Structures, Report 23, pp. 61-
  18. 69, Dept. Geophys., Charles Univ., Prague.
  19. Bucha, V., 2014a. Kirchhoff prestack depth migration in orthorhombic velocity models with
  20. differently rotated tensors of elastic moduli. Seismic Waves in Complex 3-D Structures, 24:
  21. 59-75.
  22. Bucha, V., 2014b. Kirchhoff prestack depth migration in triclinic velocity models with differently
  23. rotated tensors of elastic moduli. Seismic Waves in Complex 3-D Structures, 24: 77-93.
  24. Bucha, V. and Bulant, P. (Eds.), 2015. SW3D-CD-19 (DVD-ROM). Seismic Waves in Complex
  25. 3-D Structures, 25: 209-210.
  26. Bulant, P., 1996. Two-point ray tracing in 3-D. Pure Appl. Geophys., 148: 421-447.
  27. Bulant, P., 1999. Two-point ray-tracing and controlled initial-value ray-tracing in 3D heterogeneous
  28. block structures. J. Seismic Explor., 8: 57-75.
  29. Bulant, P. and Klimes, L., 1999. Interpolation of ray-theory travel times within ray cells. Geophys.
  30. J. Internat., 139: 273-282.
  31. Cerveny, V., Klimes, L. and Pseneik, I., 1988. Complete seismic-ray tracing in three-dimensional
  32. structures. In: Doornbos, D.J. (Ed.), Seismological Algorithms. Academic Press Inc., New
  33. York: 89-168.
  34. Gajewski, D. and Pseneik, I., 1990. Vertical seismic profile synthetics by dynamic ray tracing in
  35. laterally varying layered anisotropic structures. J. Geophys. Res., 95B: 11301-11315.
  36. Grechka, V. and Yaskevich, S., 2014. Azimuthal anisotropy in microseismic monitoring: A Bakken
  37. case study. Geophysics, 79: KS1-KS12.
  38. Isaac, J.H. and Lawton, D.C., 1999. Image mispositioning due to dipping TI media: A physical
  39. seismic modeling study. Geophysics, 64: 1230-1238.
  40. Jones, LF. and Davison, I., 2014. Seismic imaging in and around salt bodies. Interpretat., 2(4):
  41. SL1-SL20.
  42. Larner, K. and Cohen, J.K., 1993. Migration error in factorized transversely isotropic media with
  43. linear velocity variation in depth. Geophysics, 58: 1454-1467.
  44. Li, Y., Han, W., Chen, C. and Huang, T., 2012. Velocity model building for tilted orthorhombic
  45. depth imaging. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
  46. Mensch, T. and Rasolofosaon, P., 1997. Elastic-wave velocities in anisotropic media of arbitrary
  47. symmetry-generalization of Thomsen’s parameters ¢, 5 and y. Geophys. J. Internat., 128:
  48. 43-64.
  49. Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: Modeling elastic wave behavior in a
  50. vertically fractured earth. Geophysics, 62: 1954-1974.
  51. Tsvankin, I., Gaiser, J., Grechka, V., Baan, M. and Thomsen, L., 2010. Seismic anisotropy in
  52. exploration and reservoir characterization: An overview. Geophysics, 75: 75A15-75A29
  53. Versteeg, R.J. and Grau, G. (Eds.), 1991. The Marmousi experience. Proc. EAGE workshop on
  54. Practical Aspects of Seismic Data Inversion (Copenhagen, 1990). EAEG, Zeist.
  55. Vestrum, R.W., Lawton, D.C. and Schmid, R., 1999. Imaging structures below dipping TI media.
  56. Geophysics, 64: 1239-1246.
  57. Vestrum, R. and Lawton, D., 2010. Reflection point sideslip and smear in imaging below dipping
  58. anisotropic media. Geophys. Prosp., 58: 541-548.
  59. Zdraveva, O., Woodward, M., Fowler, P., Nichols, D. and Osypov, K., 2012. Anisotropic model
  60. building in complex media: VTI, TTI, or orthorhombic? Presented at SEG/EAGE Summer
  61. Research Workshop.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing