Kirchhoff prestack depth migration in simple models with differently rotated elasticity tensor: orthorhombic and triclinic anisotropy

Bucha, V., 2017. Kirchhoff prestack depth migration in simple models with differently rotated elasticity tensor: orthorhombic and triclinic anisotropy. Journal of Seismic Exploration, 26: 1-24. We use ray-based Kirchhoff prestack depth migration to calculate migrated sections in simple anisotropic homogeneous velocity models in order to demonstrate the impact of rotation of the tensor of elastic moduli on migrated images. The recorded wave field is generated in models composed of two homogeneous layers separated by a curved interface. The anisotropy of the upper layer is orthorhombic or triclinic with the rotation of the tensor of elastic moduli. We apply Kirchhoff prestack depth migration to single-layer velocity models with orthorhombic or triclinic anisotropy with a differently rotated tensor of elastic moduli. We show and discuss the errors of the migrated interface caused by incorrect velocity models used for migration. The study is limited to P-waves.
- Alkhalifah, T. and Larner, K., 1994. Migration error in transversely isotropic media. Geophysics,
- 59, 1405-1418. 有
- Audebert, F. and Dirks, V., 2006. TTI anisotropic depth migration: What tilt estimate should we
- use? Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans.
- Ball, G., 1995. Estimation of anisotropy and anisotropic 3-D prestack depth migration, offshore
- Zaire. Geophysics, 60: 1495-1513.
- 24 BUCHA
- Behera, L. and Tsvankin, I., 2009. Migration velocity analysis for tilted transversely isotropic
- media. Geophys. Prospect., 57: 13-26.
- Bucha, V., 2012. Kirchhoff prestack depth migration in 3-D simple models: comparison of triclinic
- anisotropy with simpler anisotropies. Stud. Geophys. Geod., 56: 533-552.
- Bucha, V., 2013a. Kirchhoff prestack depth migration in velocity models with and without vertical
- gradients: Comparison of triclinic anisotropy with simpler anisotropies. In: Seismic Waves
- in Complex 3-D Structures, Report 23, pp. 45-59, Dep. Geophys., Charles Univ., Prague.
- Bucha, V., 2013b. Kirchhoff prestack depth migration in velocity models with and without rotation
- of the tensor of elastic moduli: Poorly displayed part of migrated interface in correct model
- with triclinic anisotropy. In: Seismic Waves in Complex 3-D Structures, Report 23, pp. 61-
- 69, Dept. Geophys., Charles Univ., Prague.
- Bucha, V., 2014a. Kirchhoff prestack depth migration in orthorhombic velocity models with
- differently rotated tensors of elastic moduli. Seismic Waves in Complex 3-D Structures, 24:
- 59-75.
- Bucha, V., 2014b. Kirchhoff prestack depth migration in triclinic velocity models with differently
- rotated tensors of elastic moduli. Seismic Waves in Complex 3-D Structures, 24: 77-93.
- Bucha, V. and Bulant, P. (Eds.), 2015. SW3D-CD-19 (DVD-ROM). Seismic Waves in Complex
- 3-D Structures, 25: 209-210.
- Bulant, P., 1996. Two-point ray tracing in 3-D. Pure Appl. Geophys., 148: 421-447.
- Bulant, P., 1999. Two-point ray-tracing and controlled initial-value ray-tracing in 3D heterogeneous
- block structures. J. Seismic Explor., 8: 57-75.
- Bulant, P. and Klimes, L., 1999. Interpolation of ray-theory travel times within ray cells. Geophys.
- J. Internat., 139: 273-282.
- Cerveny, V., Klimes, L. and Pseneik, I., 1988. Complete seismic-ray tracing in three-dimensional
- structures. In: Doornbos, D.J. (Ed.), Seismological Algorithms. Academic Press Inc., New
- York: 89-168.
- Gajewski, D. and Pseneik, I., 1990. Vertical seismic profile synthetics by dynamic ray tracing in
- laterally varying layered anisotropic structures. J. Geophys. Res., 95B: 11301-11315.
- Grechka, V. and Yaskevich, S., 2014. Azimuthal anisotropy in microseismic monitoring: A Bakken
- case study. Geophysics, 79: KS1-KS12.
- Isaac, J.H. and Lawton, D.C., 1999. Image mispositioning due to dipping TI media: A physical
- seismic modeling study. Geophysics, 64: 1230-1238.
- Jones, LF. and Davison, I., 2014. Seismic imaging in and around salt bodies. Interpretat., 2(4):
- SL1-SL20.
- Larner, K. and Cohen, J.K., 1993. Migration error in factorized transversely isotropic media with
- linear velocity variation in depth. Geophysics, 58: 1454-1467.
- Li, Y., Han, W., Chen, C. and Huang, T., 2012. Velocity model building for tilted orthorhombic
- depth imaging. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
- Mensch, T. and Rasolofosaon, P., 1997. Elastic-wave velocities in anisotropic media of arbitrary
- symmetry-generalization of Thomsen’s parameters ¢, 5 and y. Geophys. J. Internat., 128:
- 43-64.
- Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: Modeling elastic wave behavior in a
- vertically fractured earth. Geophysics, 62: 1954-1974.
- Tsvankin, I., Gaiser, J., Grechka, V., Baan, M. and Thomsen, L., 2010. Seismic anisotropy in
- exploration and reservoir characterization: An overview. Geophysics, 75: 75A15-75A29
- Versteeg, R.J. and Grau, G. (Eds.), 1991. The Marmousi experience. Proc. EAGE workshop on
- Practical Aspects of Seismic Data Inversion (Copenhagen, 1990). EAEG, Zeist.
- Vestrum, R.W., Lawton, D.C. and Schmid, R., 1999. Imaging structures below dipping TI media.
- Geophysics, 64: 1239-1246.
- Vestrum, R. and Lawton, D., 2010. Reflection point sideslip and smear in imaging below dipping
- anisotropic media. Geophys. Prosp., 58: 541-548.
- Zdraveva, O., Woodward, M., Fowler, P., Nichols, D. and Osypov, K., 2012. Anisotropic model
- building in complex media: VTI, TTI, or orthorhombic? Presented at SEG/EAGE Summer
- Research Workshop.