Preparing the initial model for iterative deblending by median filtering

Chen, W., Yuan, J., Chen, Y. and Gan, §., 2017. Preparing the initial model for iterative deblending by median filtering. Journal of Seismic Exploration, 26: 25-47. Simultaneous-source acquisition can obtain much faster acquisition with higher spatial sampling at the cost of obtaining highly noisy seismic records. While researchers are seeking specific direct imaging algorithms for attenuating the simultaneous-source interference during the migration process, deblending is still a preferable way to deal with simultaneous-source seismic data at the current stage. Removing blending noise while preserving as much useful signal as possible is thought to be the key in the deblending process. Previous study has shown that the median filtering (MF) can be used to effectively and efficiently separate the simultaneous-source seismic data in the common midpoint domain based on one-step filtering. In this paper, we investigate the application of MF in preparing the initial model in an inversion-based deblending framework. Our results show that the application of MF in a shaping regularized iterative deblending framework can effectively accelerate the convergence rate and improve the deblending performance in a limited number of iterations. We use three different synthetic examples and one field data example to demonstrate our proposed methodology.
- Abma, R.L., 2014. Shot scheduling in simultaneous shooting. Expanded Abstr., 84th Ann. Internat.SEG Mtg., Denver: 94-98.
- Abma, R.L., Manning, T., Tanis, M., Yu, J. and Foster, M., 2010. High quality separation ofsimultaneous sources by sparse inversion. Extended Abstr., 72nd EAGE Conf., Barcelona.
- Akerberg, P., Hampson, G., Rickett, J., Martin, H. and Cole, J., 2008. Simultaneous sourceseparation by sparse radon transform. Expanded Abstr., 78th Ann. Internat. SEG Mtg., LasVegas: 2801-2805.
- Alexander, G., Abma, R., Clarke, R. and Dart, S.L., 2013, Processing results of simultaneoussource surveys compared to conventional surveys. Expanded Abstr., 83rd Ann. Internat.SEG Mtg., Houston: 104-108.
- Bagaini, C., Daly, M. and Moore, I., 2012. The acquisition and processing of dithered slip-sweepvibroseis data. Geophys. Prosp., 60: 618-639.
- Beasley, C.J., 2008. A new look at marine simultaneous sources. The Leading Edge, 27: 914-917.
- Beasley, C.J., Dragoset, B. and Salama, A., 2012. A 3D simultaneous source field test processedusing alternating projections: a new active separation method. Geophys. Prosp., 60: 591-601.
- Berkhout, A.J., 2008. Changing the mindset in seismic data acquisition. The Leading Edge, 27: 924-
- Borselen, R.V., Baardman, R., Martin, T., Goswami, B. and Fromyr, E., 2012. An inversionapproach to separating sources in marine simultaneous shooting acquisition-application to a
- Gulf of Mexico data set. Geophys. Prosp., 60: 640-647.
- Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG Mtg.Atlanta: 525-527.
- Chen, Y., 2015. Deblending using a space-varying median filter. Explor. Geophys., 46: 332-341.
- Chen, Y., Zhou, C., Yuan, J. and Jin, Z., 2014a. Application of empirical mode decomposition torandom noise attenuation of seismic data. J. Seismic Explor., 23: 481-495.
- Chen, Y., Fomel, S. and Hu, J., 2014b. Iterative deblending of simultaneous-source seismic datausing seislet-domain shaping regularization. Geophysics, 79: V179-V189.
- Chen, Y. and Ma, J., 2014, Random noise attenuation by f-x empirical mode decompositionpredictive filtering. Geophysics, 79: V81-V91.
- Chen, Y., Yuan, J., Jin, Z., Chen, K. and Zhang, L., 2014c. Deblending using normal moveoutand median filtering in common-midpoint gathers. J. Geophys. Engineer., 11(4): 045012.
- Chen, Y., Yuan, J., Zu, S., Qu, S. and Gan, S., 2015. Seismic imaging of simultaneous-source datausing constrained least-squares reverse time migration. J. Appl. Geophys., 114: 32-35.
- Daubechies, 1., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for linearinverse problems with a sparsity constraint. Communicat. Pure Appl. Mathemat., 57: 1413-
- Daubechies, I., Fornasier, M. and Loris, [., 2008. Accelerated projected gradient method for linearinverse problems with sparsity constraints. J. Fourier Analys. Applicat., 14: 764-792.
- Donoho, D.L. and Johnstone, I.M., 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika,81: 425-455.
- Doulgeris, P., Bube, K., Hampson, G. and Blacquiére, G., 2012. Covergence analysis of acoherency-constrained inversion for the separation of blended data. Geophys. Prosp., 60:769-781.
- Fomel, S., 2007a. Shaping regularization in geophysical-estimation problems. Geophysics, 72: R29-R36.
- Fomel, S., 2007b. Shaping regularization in geophysicai-estimation problems. Geophysics, 72: R29-R36.
- Fomel, S., 2008. Nonlinear shapping regularization in geophysical inverse problems. Expanded
- Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 2046-2051.
- Gan, S., Wang, S., Chen, Y. and Chen, X., 2016a. Simultaneous-source separation using iterativeseislet-frame thresholding. [EEE Geosci. Remote Sens. Lett., 13: 197-201.46 CHEN, YUAN, CHEN & GAN
- Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016b. Separation of simultaneous sourcesusing a structural-oriented median filter in the flattened dimension. Comput. Geosci., 86:46-54.
- Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016c. Velocity analysis of simultaneous- sourcedata using high-resolution semblance coping with the strong noise. Geophys. J. Internat.,204: 768-779,
- Hampson, G., Stefani, J. and Herkenhoff, F., 2008. Acquisition using simultaneous sources. TheLeading Edge, 27: 918-923.
- Huo, S., Luo, Y. and Kelamis, P.G., 2012. Simultaneous sources separation via multidirectionalvector-median filtering. Geophysics, 77: V123-V131.
- Jiang, Z. and Abma, R., 2010. An analysis on the simultaneous imaging of simultaneous sourcedata. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 3115-3118.
- Kim, Y., Gruzinov, I., Guo, M. and Sen, S., 2009. Source separation of simultaneous source OBCdata. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 51-55.
- Landweber, 1951. An iteration formula for Fredholm integral equations of the first kind. Am. J.Mathemat., 73: 615-624.
- Mahdad A Daud D and Diana Aen OAT Cannentinn af Wlandad data ber lenentleenINITIAL MODEL FOR ITERATIVE DEBLENDING 47