ARTICLE

Preparing the initial model for iterative deblending by median filtering

WEI CHEN1,2 JIANG YUAN3 YANGKANG CHEN4 SHUWEI GAN3
Show Less
1 Key Laboratory of Exploration Technology for Oil and Gas Resources of the Ministry of Education, Yangtze University, Wuhan, Hubei 430100, P. R. China.,
2 Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan, Hubei 430100, P.R. China.,
3 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Fuxue Road 18, Beijing 102200, P. R. China.,
4 Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, TX 78713, U.S.A.,
JSE 2017, 26(1), 25–47;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, W., Yuan, J., Chen, Y. and Gan, §., 2017. Preparing the initial model for iterative deblending by median filtering. Journal of Seismic Exploration, 26: 25-47. Simultaneous-source acquisition can obtain much faster acquisition with higher spatial sampling at the cost of obtaining highly noisy seismic records. While researchers are seeking specific direct imaging algorithms for attenuating the simultaneous-source interference during the migration process, deblending is still a preferable way to deal with simultaneous-source seismic data at the current stage. Removing blending noise while preserving as much useful signal as possible is thought to be the key in the deblending process. Previous study has shown that the median filtering (MF) can be used to effectively and efficiently separate the simultaneous-source seismic data in the common midpoint domain based on one-step filtering. In this paper, we investigate the application of MF in preparing the initial model in an inversion-based deblending framework. Our results show that the application of MF in a shaping regularized iterative deblending framework can effectively accelerate the convergence rate and improve the deblending performance in a limited number of iterations. We use three different synthetic examples and one field data example to demonstrate our proposed methodology.

Keywords
simultaneous source
deblending
shaping regularized iterative inversion
median filtering (MF)
initial model of deblending
References
  1. Abma, R.L., 2014. Shot scheduling in simultaneous shooting. Expanded Abstr., 84th Ann. Internat.
  2. SEG Mtg., Denver: 94-98.
  3. Abma, R.L., Manning, T., Tanis, M., Yu, J. and Foster, M., 2010. High quality separation of
  4. simultaneous sources by sparse inversion. Extended Abstr., 72nd EAGE Conf., Barcelona.
  5. Akerberg, P., Hampson, G., Rickett, J., Martin, H. and Cole, J., 2008. Simultaneous source
  6. separation by sparse radon transform. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las
  7. Vegas: 2801-2805.
  8. Alexander, G., Abma, R., Clarke, R. and Dart, S.L., 2013, Processing results of simultaneous
  9. source surveys compared to conventional surveys. Expanded Abstr., 83rd Ann. Internat.
  10. SEG Mtg., Houston: 104-108.
  11. Bagaini, C., Daly, M. and Moore, I., 2012. The acquisition and processing of dithered slip-sweep
  12. vibroseis data. Geophys. Prosp., 60: 618-639.
  13. Beasley, C.J., 2008. A new look at marine simultaneous sources. The Leading Edge, 27: 914-917.
  14. Beasley, C.J., Dragoset, B. and Salama, A., 2012. A 3D simultaneous source field test processed
  15. using alternating projections: a new active separation method. Geophys. Prosp., 60: 591-601.
  16. Berkhout, A.J., 2008. Changing the mindset in seismic data acquisition. The Leading Edge, 27: 924-
  17. Borselen, R.V., Baardman, R., Martin, T., Goswami, B. and Fromyr, E., 2012. An inversion
  18. approach to separating sources in marine simultaneous shooting acquisition-application to a
  19. Gulf of Mexico data set. Geophys. Prosp., 60: 640-647.
  20. Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG Mtg.
  21. Atlanta: 525-527.
  22. Chen, Y., 2015. Deblending using a space-varying median filter. Explor. Geophys., 46: 332-341.
  23. Chen, Y., Zhou, C., Yuan, J. and Jin, Z., 2014a. Application of empirical mode decomposition to
  24. random noise attenuation of seismic data. J. Seismic Explor., 23: 481-495.
  25. Chen, Y., Fomel, S. and Hu, J., 2014b. Iterative deblending of simultaneous-source seismic data
  26. using seislet-domain shaping regularization. Geophysics, 79: V179-V189.
  27. Chen, Y. and Ma, J., 2014, Random noise attenuation by f-x empirical mode decomposition
  28. predictive filtering. Geophysics, 79: V81-V91.
  29. Chen, Y., Yuan, J., Jin, Z., Chen, K. and Zhang, L., 2014c. Deblending using normal moveout
  30. and median filtering in common-midpoint gathers. J. Geophys. Engineer., 11(4): 045012.
  31. Chen, Y., Yuan, J., Zu, S., Qu, S. and Gan, S., 2015. Seismic imaging of simultaneous-source data
  32. using constrained least-squares reverse time migration. J. Appl. Geophys., 114: 32-35.
  33. Daubechies, 1., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for linear
  34. inverse problems with a sparsity constraint. Communicat. Pure Appl. Mathemat., 57: 1413-
  35. Daubechies, I., Fornasier, M. and Loris, [., 2008. Accelerated projected gradient method for linear
  36. inverse problems with sparsity constraints. J. Fourier Analys. Applicat., 14: 764-792.
  37. Donoho, D.L. and Johnstone, I.M., 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika,
  38. 81: 425-455.
  39. Doulgeris, P., Bube, K., Hampson, G. and Blacquiére, G., 2012. Covergence analysis of a
  40. coherency-constrained inversion for the separation of blended data. Geophys. Prosp., 60:
  41. 769-781.
  42. Fomel, S., 2007a. Shaping regularization in geophysical-estimation problems. Geophysics, 72: R29-
  43. R36.
  44. Fomel, S., 2007b. Shaping regularization in geophysicai-estimation problems. Geophysics, 72: R29-
  45. R36.
  46. Fomel, S., 2008. Nonlinear shapping regularization in geophysical inverse problems. Expanded
  47. Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 2046-2051.
  48. Gan, S., Wang, S., Chen, Y. and Chen, X., 2016a. Simultaneous-source separation using iterative
  49. seislet-frame thresholding. [EEE Geosci. Remote Sens. Lett., 13: 197-201.
  50. 46 CHEN, YUAN, CHEN & GAN
  51. Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016b. Separation of simultaneous sources
  52. using a structural-oriented median filter in the flattened dimension. Comput. Geosci., 86:
  53. 46-54.
  54. Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016c. Velocity analysis of simultaneous- source
  55. data using high-resolution semblance coping with the strong noise. Geophys. J. Internat.,
  56. 204: 768-779,
  57. Hampson, G., Stefani, J. and Herkenhoff, F., 2008. Acquisition using simultaneous sources. The
  58. Leading Edge, 27: 918-923.
  59. Huo, S., Luo, Y. and Kelamis, P.G., 2012. Simultaneous sources separation via multidirectional
  60. vector-median filtering. Geophysics, 77: V123-V131.
  61. Jiang, Z. and Abma, R., 2010. An analysis on the simultaneous imaging of simultaneous source
  62. data. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 3115-3118.
  63. Kim, Y., Gruzinov, I., Guo, M. and Sen, S., 2009. Source separation of simultaneous source OBC
  64. data. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 51-55.
  65. Landweber, 1951. An iteration formula for Fredholm integral equations of the first kind. Am. J.
  66. Mathemat., 73: 615-624.
  67. Mahdad A Daud D and Diana Aen OAT Cannentinn af Wlandad data ber lenentleen
  68. INITIAL MODEL FOR ITERATIVE DEBLENDING 47
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing