ARTICLE

A non-split perfectly matched layer absorbing boundary condition for the second-order wave equation modeling

C. ZHANG1,3 B. SUN1 H. YANG1 J. MA2
Show Less
1 School of Aerospace, Tsinghua University, Beijing, P.R. China. bbsunok@126.com,
2 Department of Mathematics, Harbin Institute of Technology, Harbin, P.R. China.,
3 Department of Geophysics, Research Institute of Petroleum Exploration & Development, Beijing, P.R. China.,
JSE 2016, 25(6), 513–525;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhang, C., Sun, B., Yang, H. and Ma, J., 2016. A non-split perfectly matched layer absorbing boundary condition for the second-order wave equation modeling. Journal of Seismic Exploration, 25: 513-525. The perfectly matched layer (PML) absorbing boundary conditions (ABC) have been well studied for seismic wavefield modeling. However, existing approaches are either based on a wavefield variable-split or are only applicable to first-order wave equations. In this paper, we present a non-split PML ABC for the second order wave equations in displacement. The principle of the proposed method lies in introducing a series of auxiliary variables to represent the partial derivatives associated with the stretching axis. We derive the non-split PML formula by using basic tensor algebra. The derived equations are in a compact form which makes the ABC condition easier for implementation in practice. Furthermore, as no extra splitting wavefield variables are introduced, the computer memory usage of wave equation modeling can be reduced accordingly. Numerical results for both acoustic and elastic examples show the quality of the performance of the proposed new method.

Keywords
perfectly matched layer
absorbing boundary condition
second-order
wave equation
seismic modeling
finite difference
References
  1. Abarbanel, S. and Gottlieb, D., 1997. A mathematical analysis of the PML method. J. Comput.
  2. Phys., 134: 357-363.
  3. Aki, K. and Richards, P., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman and
  4. Co., San Francisco.
  5. Basu, U. and Chopra, A., 2003. Perfectly matched layers for time-harmonic elastodynamics of
  6. unbounded domains: theory and finite-element implementation. Comput. Meth. Appl. Mech.
  7. Engin., 192: 1337-1375.
  8. Baysal, E., Kosloff, D. and Sherwood, J., 1983. Reverse time migration. Geophysics, 48:
  9. 1514-1524.
  10. Berenger, J.P., 1994. A perfectly matched layer for the absorption of electro-magnetic waves. J.
  11. Comput. Phys., 114: 185-200.
  12. Cerjan, C., Kosloff, D., Kosloff, R. and Resef, M., 1985. A non reflecting boundary condition for
  13. discrete acoustic and elastic wave equations. Geophysics, 50: 705-708.
  14. Clayton, R. and Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave
  15. equations. Bull. Seismol. Soc. Am., 67: 1529-1540.
  16. Chew, W. and Liu, Q., 1996. Perfectly matched layers for elastodynamics: a new absorbing
  17. boundary condition. J. Comput. Acoust., 4: 341-359.
  18. Collino, F. and Monk, P., 1998. Optimizing the perfectly matched layer. Comput. Meth. Appl.
  19. Mech. Eng., 164: 157-171.
  20. Collino, F. and Tsogka, C., 2001. Application of the PML absorbing layer model to the linear
  21. elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66: 294-307.
  22. Dablain, M., 1986. The application of high-order differencing to the scalar wave equation
  23. Geophysics, 51: 54-66.
  24. Drossaert, F. and Giannopoulos, A., 2007. A nonsplit complex frequency shifted PML based on
  25. recursive integration for FDTD modeling of elastic waves. Geophysics, 72(2): T9-T17.
  26. LAYER ABSORBING BOUNDARY CONDITION 523
  27. Festa, G. and Vilotte, J., 2005. The Newmark scheme as velocity-stress time staggering: An
  28. efficient PML implementation for spectral-element simulations of elastodynamics. Geophys.
  29. J. Internat., 161: 789-812.
  30. Gedney, S., 1996. An anisotropic PML absorbing media for the FDTD simulation of fields in flossy
  31. and dispersive media. Electromagnet., 16: 399-415.
  32. Hastings, F., Schneider, J. and Broschat, S., 1996. Application of the perfectly matched layer
  33. (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am., 100:
  34. 3061-3069.
  35. Hagstrom, T. and Hariharan, S., 1998. A formulation of asymptotic and exact boundary conditions
  36. using local operators. Appl. Numer. Math., 27: 403-416.
  37. Kelly, K., Ward, R., Treitel, S. and Alford, R., 1976. Synthetic seismograms: A finite-difference
  38. approach. Geophysics, 41: 2-27.
  39. Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched layer improved
  40. at grazing incidence for the seismic wave equation. Geophysics, 72(5): SM155-SM167.
  41. Komatitsch, D. and Tromp, J., 2003. A perfectly matched layer absorbing boundary condition for
  42. the second-order seismic wave equation. Geophys. J. Internat., 154: 146-153.
  43. Liu, J., Ma, J. and Yang, H., 2009. The study of perfectly matched layer absorbing boundaries for
  44. SH wave fields. Appl. Geophys., 6: 267-274.
  45. Liu, Q. and Tao, J., 1997. The perfectly matched layer for acoustic waves in absorptive media. J.
  46. Acoust. Soc. Am., 102: 2072-2082.
  47. Liu, Y. and Sen, M.K., 2010. A hybrid scheme for absorbing edge reflections in numerical
  48. modeling of wave propagation. Geophysics, 75(2): Al1-A6.
  49. Loewenthal, D. and Mufti, I., 1983. Reverse time migration in spatial frequency domain.
  50. Geophysics, 48: 627-635.
  51. McMechan, G.A., 1983. Migration by extrapolation of time-dependent boundary values. Geophys.
  52. Prosp., 31: 413-420.
  53. Mur, G., 1981. Absorbing boundary conditions for the finite-difference approximation of the
  54. time-domain electromagnetic field equations. IEEE Transact. Electromagn. Compat., 23:
  55. 377-382.
  56. Qi. Q. and Geers, T., 1998. Evaluation of the perfectly matched layer for computational acoustics.
  57. J. Comput. Phys., 139: 166-183.
  58. Ramadan, O., 2003. Auxiliary differential equation formulation: An efficient implementation of the
  59. perfectly matched layer. IEEE Microwave Wireless Compon. Lett., 13: 69-71.
  60. Sacks, Z., Kingsland, D., Lee, R. and Lee, J., 1995. A perfectly matched anisotropic absorber for
  61. use as an absorbing boundary condition. IEEE Transact. Antenn. Propag., 43: 1460-1463.
  62. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
  63. 49: 1259-1266.
  64. Teixeira, F. and Chew, W., 2000. Complex space approach to perfectly matched layers: A review
  65. and some new developments. Internat. J. Numer. Model. - Electron. Netw., Devices Fak
  66. 13: 441-455.
  67. Virieux, J., 1984. SH-wave propagation in heterogeneous media: Velocity stress finite-difference
  68. : method. Geophysics, 49: 1933-1957.
  69. Wang, L. and Liang, C., 2006. A new implementation of CFS-PML for ADI-FDTD method.
  70. Microw. Optic. Technol. Lett., 48: 1924-1928.
  71. Wang, T. and Tang, X., 2003. Finite-difference modeling of elastic wave propagation: A
  72. non-splitting perfectly matched layer approach. Geophysics, 68: 1749-1755.
  73. Whitmore, D. 1983. Iterative depth imaging by back time propagation. Expanded Abstr., 53rd Ann.
  74. Internat. SEG Mtg., Las Vegas: 382-385.
  75. Zeng, Y. and Liu, Q., 2004. A multidomain PSTD method for 3D elastic wave equations. Bull.
  76. Seismol. Soc. Am., 94: 1002-1015.
  77. Zhang, W. and Shen, Y., 2010. Unsplit complex frequency-shifted PML implementation using
  78. auxiliary differential equations for seismic wave modeling. Geophysics, 75(4): T141-T154.
  79. 524 ZHANG, SUN, YANG & MA
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing