Shale anisotropic elastic modeling and seismic reflections

Wu, X., Uden, R. and Chapman, M., 2016. Shale anisotropic elastic modeling and seismic reflections. Journal of Seismic Exploration, 25: 527-542. Shales are rocks with various mineralogy and complex fabric, which exhibit strong anisotropy. The change in effective velocities due to kerogen content and pore geometry influences the AVO (Amplitude Versus-Offset) behavior of shale-gas formations. How the conventional seismic survey plays its role in the exploration of unconventional shale gas is a key issue. In this paper, we present a method for estimating the anisotropic elastic stiffness of organic shales. The model takes mineralogy, kerogen, pore geometry and cracks, as well as the saturated fluids into consideration. A compaction-dependent Orientation Distribution Function (ODF) is incorporated to quantify the anisotropy originating from the preferential orientation of non-source shale inclusions. Comparison of the estimated elastic stiffnesses with experimental measurements of shale core sample from the Bazhenov formation indicates this method has the potential to estimate the elastic properties of organic shales. We also use another example from Eagle Ford formation to study the feasibility of distinguishing between proppant suspending hydraulic fluid and contacting with matrix during hydraulic stimulation stage. A half-space model with anisotropy due to multi-set of cracks is constructed to investigate the amplitude versus azimuthal and incident angle (AVAZ) reflections from the interface. The results indicate that the AVAZ behavior of PP reflection is different between proppant suspending fluid case and contacting with matrix case. The converted P-SH wave and SH-wave exploration may also offer detection of crack properties (distribution and intensity) to optimize shale gas production.
- Allan, A.M., Vanorio, T. and Dahl, J.E., 2014. Pyrolysis-induced P-wave velocity anisotropy in
- organic rich shales. Geophysics, 79(2): D41-D53. doi: 10.1190/geo2013-0254.1
- Bandyopadhyay, K., 2009. Seismic anisotropy-geological causes and its implications to reservoir
- geophysics. Ph.D. thesis, Stanford University, Stanford.
- Brown, R. and Korringa, J., 1975. On the dependence of the elastic properties of a porous rock on
- the compressibility of the pore fluid. Geophysics, 40: 608-616. doi: 10.1190/1.1440551
- Curtis, J.B., 2002. Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921-1938.
- doi: 10.1306/61EEDDBE-173E-11D7-8645000102C1865D
- Gale, J.F.W., Reed, R.M. and Holder, J., 2007. Natural fractures in the Barnett Shale and their
- importance for hydraulic fracture treatments. AAPG Bull., 91(4): 603-622.
- doi: 10.1306/11010606061
- Hornby, B.E., Schwartz, L.M. and Hudson, A.J., 1994. Anisotropic effective-medium modeling
- of the elastic properties of shales. Geophysics, 59, 1570-1583. doi: 10.1190/1.1443546
- Hudson, J.A., 1980. Overall properties of a cracked solid. Math. Proc. Camb. Phil.Soc., 88,
- 371-384. doi: 10.1017/S0305004100057674
- Hudson, J.A., 1981. Wave speeds and attenuation of elastic waves in material containing cracks.
- Geophys. J. Roy. Astr. Soc., 64: 133-150. doi: 10.1111/j.1365-246X.1981.tb02662.x
- Jakobsen, M., Hudson, J.A. and Johansen, T.A., 2003. T-matrix approach to shale acoustics.
- Geophys. J. Internat., 154: 533-558. doi: 10.1046/j.1365-246X.2003.01977.x
- Johansen, T.A., Rudd, B.O. and Jakobsen, M., 2004. Effect of grain scale alignment on seismic
- anisotropy and reflectivity of shales. Geophys. Prosp., 52: 133-149.
- doi: 10.1046/j.1365-2478.2003.00405.x
- Kobchenko, M., Panahi, H., Renard, F., Dysthe, D.K., Malthe-Sorenssen, A., Mazzini, A.,
- Scheibert, J., Jamtveit, B. and Meakin, P., 2011. 4D imaging of fracturing in organic-rich
- shales during heating. J. Geophys. Res.: Solid Earth, 116: B12201.
- doi: 10.1029/2011JB008565
- Mavko, G., Mukerji, T. and Dvorkin, J., 1998. The Rock Physics Handbook: Tools for Seismic
- Analysis in Porous Media. Cambridge University Press, Cambridge.
- 542 WU, UDEN & CHAPMAN
- Sayers, C.M., 1994, The elastic anisotropy of shales. J. Geophys. Res., 99: 767-774.
- doi: 10. 1029/93JB02579
- Sayers, C.M., 2013. The effect of kerogen on the elastic anisotropy of organic-rich shales.
- Geophysics, 78(2): D65-D74. doi: 10.1190/geo2012-0309.1
- Schoenberg, M. and Protazio, J., 1992. ‘Zoeppritz’ rationalized and generalized to anisotropy. J.
- Seismic Explor., 1: 125-144. doi: 10.1121/1.2029011
- Vernik, L. and Liu, X. 1997. Velocity anisotropy in shales: A petrophysical study. Geophysics,
- 62(2), 521-532. doi: 10.1190/1.1444162
- Vernik, L. and Nur, A., 1992. Ultrasonic velocity and anisotropy of hydrocarbon source rocks.
- Geophysics, 57: 727-735. doi: 10.1190/1.1443286
- Vernik, L. and Landis, C., 1996. Elastic anisotropy of source rocks: Implications for hydrocarbon
- generation and primary migration. AAPG Bull. 80(4): 531-544.
- Xu, S. and Payne, M.A., 2009. Modeling elastic properties in carbonate rocks. The Leading Edge,
- 28: 66-74.
- Yenugu, M., 2015. Geophysical and geomechanical rock property templates for source rocks.
- Expanded Abstr., 85th Ann. Internat. SEG Mtg., New Orleans: 3176-3180.
- Zeszotarski, J.C., Chromik, R.R., Vinci, R.P., Messmer, M.C.,Michels, R., and Larsen, J.W.,
- Imaging and mechanical property measurements of kerogen via nano indentation.
- Geochim. Cosmochim. Acta, 68(20): 4113-4119. doi: 10.1016/j.gca.2003.11.031