ARTICLE

Shale anisotropic elastic modeling and seismic reflections

XIAOYANG WU1 RICHARD UDEN2 MARK CHAPMAN3
Show Less
1 Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, U.K. xywu@bgs.ac.uk,
2 Geoscience Consultant, Marathon Oil Corporation (retired), 5555 San Felipe, Houston, TX 77056, U.S.A.,
JSE 2016, 25(6), 527–542;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wu, X., Uden, R. and Chapman, M., 2016. Shale anisotropic elastic modeling and seismic reflections. Journal of Seismic Exploration, 25: 527-542. Shales are rocks with various mineralogy and complex fabric, which exhibit strong anisotropy. The change in effective velocities due to kerogen content and pore geometry influences the AVO (Amplitude Versus-Offset) behavior of shale-gas formations. How the conventional seismic survey plays its role in the exploration of unconventional shale gas is a key issue. In this paper, we present a method for estimating the anisotropic elastic stiffness of organic shales. The model takes mineralogy, kerogen, pore geometry and cracks, as well as the saturated fluids into consideration. A compaction-dependent Orientation Distribution Function (ODF) is incorporated to quantify the anisotropy originating from the preferential orientation of non-source shale inclusions. Comparison of the estimated elastic stiffnesses with experimental measurements of shale core sample from the Bazhenov formation indicates this method has the potential to estimate the elastic properties of organic shales. We also use another example from Eagle Ford formation to study the feasibility of distinguishing between proppant suspending hydraulic fluid and contacting with matrix during hydraulic stimulation stage. A half-space model with anisotropy due to multi-set of cracks is constructed to investigate the amplitude versus azimuthal and incident angle (AVAZ) reflections from the interface. The results indicate that the AVAZ behavior of PP reflection is different between proppant suspending fluid case and contacting with matrix case. The converted P-SH wave and SH-wave exploration may also offer detection of crack properties (distribution and intensity) to optimize shale gas production.

Keywords
anisotropy
seismic reflection
hydraulic fracture
shale gas
References
  1. Allan, A.M., Vanorio, T. and Dahl, J.E., 2014. Pyrolysis-induced P-wave velocity anisotropy in
  2. organic rich shales. Geophysics, 79(2): D41-D53. doi: 10.1190/geo2013-0254.1
  3. Bandyopadhyay, K., 2009. Seismic anisotropy-geological causes and its implications to reservoir
  4. geophysics. Ph.D. thesis, Stanford University, Stanford.
  5. Brown, R. and Korringa, J., 1975. On the dependence of the elastic properties of a porous rock on
  6. the compressibility of the pore fluid. Geophysics, 40: 608-616. doi: 10.1190/1.1440551
  7. Curtis, J.B., 2002. Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921-1938.
  8. doi: 10.1306/61EEDDBE-173E-11D7-8645000102C1865D
  9. Gale, J.F.W., Reed, R.M. and Holder, J., 2007. Natural fractures in the Barnett Shale and their
  10. importance for hydraulic fracture treatments. AAPG Bull., 91(4): 603-622.
  11. doi: 10.1306/11010606061
  12. Hornby, B.E., Schwartz, L.M. and Hudson, A.J., 1994. Anisotropic effective-medium modeling
  13. of the elastic properties of shales. Geophysics, 59, 1570-1583. doi: 10.1190/1.1443546
  14. Hudson, J.A., 1980. Overall properties of a cracked solid. Math. Proc. Camb. Phil.Soc., 88,
  15. 371-384. doi: 10.1017/S0305004100057674
  16. Hudson, J.A., 1981. Wave speeds and attenuation of elastic waves in material containing cracks.
  17. Geophys. J. Roy. Astr. Soc., 64: 133-150. doi: 10.1111/j.1365-246X.1981.tb02662.x
  18. Jakobsen, M., Hudson, J.A. and Johansen, T.A., 2003. T-matrix approach to shale acoustics.
  19. Geophys. J. Internat., 154: 533-558. doi: 10.1046/j.1365-246X.2003.01977.x
  20. Johansen, T.A., Rudd, B.O. and Jakobsen, M., 2004. Effect of grain scale alignment on seismic
  21. anisotropy and reflectivity of shales. Geophys. Prosp., 52: 133-149.
  22. doi: 10.1046/j.1365-2478.2003.00405.x
  23. Kobchenko, M., Panahi, H., Renard, F., Dysthe, D.K., Malthe-Sorenssen, A., Mazzini, A.,
  24. Scheibert, J., Jamtveit, B. and Meakin, P., 2011. 4D imaging of fracturing in organic-rich
  25. shales during heating. J. Geophys. Res.: Solid Earth, 116: B12201.
  26. doi: 10.1029/2011JB008565
  27. Mavko, G., Mukerji, T. and Dvorkin, J., 1998. The Rock Physics Handbook: Tools for Seismic
  28. Analysis in Porous Media. Cambridge University Press, Cambridge.
  29. 542 WU, UDEN & CHAPMAN
  30. Sayers, C.M., 1994, The elastic anisotropy of shales. J. Geophys. Res., 99: 767-774.
  31. doi: 10. 1029/93JB02579
  32. Sayers, C.M., 2013. The effect of kerogen on the elastic anisotropy of organic-rich shales.
  33. Geophysics, 78(2): D65-D74. doi: 10.1190/geo2012-0309.1
  34. Schoenberg, M. and Protazio, J., 1992. ‘Zoeppritz’ rationalized and generalized to anisotropy. J.
  35. Seismic Explor., 1: 125-144. doi: 10.1121/1.2029011
  36. Vernik, L. and Liu, X. 1997. Velocity anisotropy in shales: A petrophysical study. Geophysics,
  37. 62(2), 521-532. doi: 10.1190/1.1444162
  38. Vernik, L. and Nur, A., 1992. Ultrasonic velocity and anisotropy of hydrocarbon source rocks.
  39. Geophysics, 57: 727-735. doi: 10.1190/1.1443286
  40. Vernik, L. and Landis, C., 1996. Elastic anisotropy of source rocks: Implications for hydrocarbon
  41. generation and primary migration. AAPG Bull. 80(4): 531-544.
  42. Xu, S. and Payne, M.A., 2009. Modeling elastic properties in carbonate rocks. The Leading Edge,
  43. 28: 66-74.
  44. Yenugu, M., 2015. Geophysical and geomechanical rock property templates for source rocks.
  45. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New Orleans: 3176-3180.
  46. Zeszotarski, J.C., Chromik, R.R., Vinci, R.P., Messmer, M.C.,Michels, R., and Larsen, J.W.,
  47. Imaging and mechanical property measurements of kerogen via nano indentation.
  48. Geochim. Cosmochim. Acta, 68(20): 4113-4119. doi: 10.1016/j.gca.2003.11.031
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing