ARTICLE

Frequency-domain full waveform inversion with rugged free surface based on variable grid finite-difference method

YUANYUAN LI ZHENCHUN LI KAI ZHANG YUZHAO LIN
Show Less
School of Geosciences, China University of Petroleum, Qingdao 266580, P.R. China.,
JSE 2016, 25(6), 543–559;
Submitted: 13 October 2015 | Accepted: 4 October 2016 | Published: 1 December 2016
© 2016 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Li, Y., Li, Z., Zhang, K. and Lin, Y., 2016. Frequency-domain full waveform inversion with rugged free surface based on variable grid finite-difference method. Journal of Seismic Exploration, 25: 543-559. Full waveform inversion (FWI) is a challenging data-fitting procedure to solve model parameter reconstruction problems. But FWI with irregular topography, which is common in the real land cases, has been barely researched. For more accurately describing of the subsurface structures, we introduce the effect of surface topography in the full waveform inversion. Then we develop a frequency-domain modeling algorithm for irregular topography medium, and incorporate it into a full waveform inversion algorithm. The variable grid finite-difference method is applied to the frequency-domain modeling and inversion algorithm to improve the accuracy of results. Specifically, the computational domain near the surface is discretized by fine rectangular grids, while the rest part is discretized by coarse grids. We apply successive inversions of overlapping frequency groups and layer stripping strategy implemented with complex frequencies to the FWI algorithm to improve the stability of the iterative procedure. In the meantime, the pseudo-Hessian matrix is used to scale the gradient to improve the efficiency. In the numerical tests, we validated our algorithm with two synthetic tests consisting of a layered model and a modified dip section of the overthrust model.

Keywords
full waveform inversion
frequency-domain
variable grid
finite-difference method
rugged free surface
References
  1. Askan, A., Akcelik, V., Bielak, J., and Ghattas, O., 2007. Full waveform inversion for seismicvelocity and anelastic losses in heterogeneous structures. Bull. Seismol. Soc. Am., 97: 1990-
  2. Bleibinhaus, F. and Rondenay, S., 2009. Effects of surface scattering in full-waveform inversion.Geophysics, 74: WCC69-WCC77.
  3. Brossier, R., Virieux, J. and Operto, $., 2008. Parsimonious finite-volume frequency-domainmethod for 2-D P-SV-wave modeling. Geophys. J. Internat., 175: 541-559.
  4. Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore structures by2D elastic frequency-domain full-waveform inversion. Geophysics, 74: WCC105-WCC118.
  5. Guo, Z.B., and Li, Z.C., 2014. Acoustic wave modeling in frequency-spatial domain with surface: topography. J. Jilin Univ. (Earth Sci. Ed.), 44: 683-693.
  6. Hicks, G.J. and Pratt, R.G., 2001. Reflection waveform inversion using local descent methods:estimating attenuation and velocity over a gas-sand deposit. Geophysics, 66: 598-612.
  7. Huang, C., and Dong, L.G., 2009. Staggered-grid high-order finite-difference method in elasticwave simulation with variable grids and local time-steps. Chin. J. Geophys. , 52: 2870-2878.(in Chinese)
  8. Hustedt, B., Operto, S. and Virieux, J., 2004. Mixed- grid and staggered-grid finite-differencemethods for frequency-domain acoustic wave modeling. Geophys. J. Internat., 157:1269-1296.
  9. Jang, U., Min, D., Choi, Y. and Shin, C., 2008. Frequency-domain elastic waveform inversion withirregular surface topography. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas:1-5.558 LI, LI, ZHANG & LIN
  10. Lee, H.-Y., Koo, J.M., Min, D.-J., Kwon, B.-D. and Yoo, H.S., 2010. Frequency-domain elasticfull waveform inversion for VTI media. Geophys. J. Internat., 183: 2884-2904.
  11. Liu, C., Gao, F.X., Feng, X., Liu, Y. and Ren, Q.C., 2015. Memoryless quasi-Newton (MLQN)method for 2D acoustic full waveform inversion. Explor. Geophys., 46: 168-177.
  12. Liu, X.X., Yin, X.Y. and Li, H.S., 2014. Optimal variable-grid finite-difference modeling forporous media. J. Geophys. Engineer., 11: 65011-65019.
  13. Malinowski, M., Operto, S. and Ribodetti, A., 2011. High-resolution seismic attenuation imagingfrom wide-aperture onshore data by visco-acoustic frequency-domain full-waveforminversion. Geophys. J. Internat., 186: 1179-1204.
  14. Operto, S., Virieux, J., Dessa, J.X. and Pascal, G., 2006. Crustal seismic imaging from multifoldocean bottom seismometer data by frequency domain full waveform tomography: Applicationto the eastern Nankai trough. J. Geophys. Res., 111: B09306.
  15. Prieux, V., Brossier, R., Operto, S. and Virieux, J., 2013. Multiparameter full waveform inversionof multicomponent ocean-bottom-cable data from the Valhall field. Part 1: Imagingcompressional wave speed, density and attenuation. Geophys. J. Internat., 194: 1640-1664.
  16. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
  17. Multiscale imaging of complex structures from multifold wide-aperture seismic data byfrequency-domain full-waveform tomography: application to a thrust belt. Geophys. J.Internat., 159: 1032-1056.
  18. Robertsson, J.O.A., 1996. A numerical free-surface condition for elastic/viscoelastic finite-differencemodeling in the presence of topography. Geophysics, 61: 1921-1934.
  19. Sheen, D.H., Tuncay, K., Baag, C.E. and Ortoleva, P.J., 2006. Time domain Gauss-Newtonseismic waveform inversion in elastic media. Geophys. J. Internat., 167: 1373-1384.
  20. Shin, C., Yoon, K., Marfurt, K.J., Park, K., Yang, D., Lim, H.Y., Chung, S., and Shin, S., 2001.
  21. Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imagingand inversion. Geophysics, 66: 1856-1863.
  22. Smithyman, B., Pratt, R.G., Hayles, J. and Wittebolle, R., 2009. Detecting near-surface objectswith seismic waveform tomography. Geophysics, 74: WCC119-WCC127.
  23. Tarantola, A., 1984. Linearized inversion of seismic reflection data. Geophys. Prosp., 32: 998-1015.
  24. Vigh, D., Cheng, X., Jiao, K., Sun, D. and Kapoor, J., 2014. Multiparameter TTI full waveforminversion on long-offset broadband acquisition: A case study. Expanded Abstr., 84th Ann.Internat. SEG Mtg., Denver: 1-5.
  25. Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Stekl, I.,
  26. Guasch, L., Win, C., Conroy, G. and Bertrand, A., 2013. Anisotropic 3D full-waveforminversion. Geophysics, 78: R59-R80.
  27. Wei, Z.F., Gao, H.W. and Zhang, J.F., 2014. Time-domain full waveform inversion based on anirregular-grid acoustic modeling method. Chin. J. Geophys., 57: 586-594.
  28. Zhang, W. and Shen, Y., 2010. Unsplit complex frequency-shifted PML implementation usingauxiliary differential equations for seismic wave modeling. Geophysics, 75: T141-T154.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing