ARTICLE

Elastic seismic envelope inversion

JINGRUI LUO1,2 RU-SHAN WU2 JINGHUAI GAO3
Show Less
2 Modeling and Imaging Laboratory, Earth & Planetary Sciences, Univ. of California, Santa Cruz, CA 95064, U.S.A.,
JSE 2016, 25(2), 103–119;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Luo, J., Wu, R.-S. and Gao, J., 2016. Elastic seismic envelope inversion. Journal of Seismic Exploration, 25: 103-119. We propose the elastic seismic envelope inversion method, which is an extension of our previous work about the acoustic situation. Seismic full waveform inversion suffers severely from the local minima problem, which comes from the lack of low frequency information in the data. The envelope of the data carries ultra low frequency information and thus can be used to construct the large scale component of the model. We give the method of envelope inversion for the elastic situation where P-wave velocity and S-wave velocity are inverted simultaneously. Numerical examples using the Marmousi II model proved that the combined elastic envelope inversion plus waveform inversion (EI+WI) provides much better results than the conventional elastic full waveform inversion, especially for the case of lacking low frequency information in the seismic data.

Keywords
full waveform inversion
envelope inversion
elastic
References
  1. Biondi, B. and Almomin, A., 2012. Tomographic full waveform inversion (TFWI) by combining
  2. full waveform inversion with wave-equation migration velocity analysis. Expanded Abstr. ,
  3. 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  4. Biondi, B. and Almomin, A., 2013. Tomographic full waveform inversion (TFWI) by extending the
  5. velocity model along the time-lag axis. Expanded Abstr., 83rd Ann. Internat. SEG Mtg.,
  6. Houston: 1031-1036.
  7. Biondi, B. and Almomin, A., 2014. Efficient and robust waveform-inversion workflow:
  8. Tomographic FWI followed by FWI. Expanded Abstr., 84th Ann. Internat. SEG Mtg.,
  9. Denver: 917-921.
  10. Brenders, A.J. and Pratt, R.G., 2007. Full waveform tomography for lithospheric imaging: Results
  11. from a blind test in a realistic crustal model. Geophys. J. Internat., 168: 133-151.
  12. Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveform
  13. Inversion. Geophysics, 60: 1457-1473.
  14. Crase, E., Wideman, C., Noble, M. and Tarantola, A., 1992. Nonlinear elastic waveform inversion
  15. of land seismic reflection data. J. Geophys. Res., 97: 4685-4703.
  16. Debski, W. and Tarantola, A., 1995. Information of elastic parameters obtained from the amplitudes
  17. of reflected waves. Geophysics, 60: 1426-1436.
  18. Djipéssé, H. and Tarantola, A., 1999. Multiparameters Li norm waveform fitting: Interpretation of
  19. Gulf of Mexico reflection seismograms. Geophysics, 64: 1023-1035.
  20. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migration. Proc. SIAM
  21. Conf. Inverse Scatt.: Theory and Applications. Soc. Industr. Appl. Mathemat., Robinson,
  22. E. and Weglein, A. (Eds.), Philadelphia: 206-220.
  23. Liu, J., Chauris, H. and Calandra, H., 2011. The normalized integration method - an alternative
  24. to full waveform inversion? Near Surface 2011, 17th EEEG Mtg., Leicester: B07.
  25. Luo, J. and Wu, R.S., 2013. Envelope inversion - some application issues. Expanded Abstr., 83rd
  26. Ann. Internat. SEG Mtg., Houston: 1042-1047.
  27. Luo, J. and Wu, R.S., 2014. Seismic envelope inversion: reduction of local minima and noise
  28. resistance. Geophys. Prosp., 63: 597-614.
  29. Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.
  30. Geophysics, 52: 1211-1228.
  31. Mora, P., 1988. Elastic wave-field inversion of reflection and transmission data. Geophysics, 53:
  32. 750-759.
  33. Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and
  34. verification in a physical scale model. Geophysics, 64: 888-901.
  35. Pratt, R.G. and Shipp, R.M., 1999. Seismic waveform inversion in the frequency domain, Part 2:
  36. Fault delineation in sediments using crosshole data. Geophysics, 64: 902-914.
  37. 116 LUO, WU & GAO
  38. Sambridge, M.S., Tarantola, A. and Kennett, B.L.N., 1991. An alternative strategy for non-linear
  39. inversion of seismic waveforms. Geophys. Prosp., 39: 723-736.
  40. Sears, T.J., Singh, S.C. and Barton, P.J., 2008. Elastic full waveform inversion of multi-component
  41. OBC seismic data. Geophys. Prosp., 56: 843-862.
  42. Sears, T.J., Barton, P.J. and Singh, S.C., 2010. Elastic full waveform inversion of multicomponent
  43. ocean-bottom cable seismic data: Application to Alba Field, U.K. North Sea. Geophysics,
  44. 75: R109-R119.
  45. Shin, C. and Cha, Y.H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Int., 173:
  46. 922-931.
  47. Shin, C. and Cha, Y.H., 2009. Waveform inversion in the Laplace-Fourier domain. Geophys. J.
  48. Int., 177: 1067-1079.
  49. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
  50. 49: 1259-1266.
  51. Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.
  52. Geophysics, 51: 1893-1903.
  53. Wang, H., Singh, S.C., Jian, H. and Calandra, H., 2012. Integrated inversion of subsurface velocity
  54. structures using wave equation tomography and full waveform inversion. Expanded Abstr,
  55. 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  56. Warner, M. and Guasch, L., 2014. Adaptive waveform inversion: Theory. Expanded Abstr., 84th
  57. Ann. Internat. SEG Mtg., Denver: 1089-1093.
  58. Wu, R.S., Luo, J. and Wu, B., 2013. Ultra-low-frequency information in seismic data and envelope
  59. inversion. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 3078-3082.
  60. Wu, R.S., Luo, J. and Wu, B., 2014. Seismic envelope inversion and modulation signal model.
  61. Geophysics, 79: WA13-WA24.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing