ARTICLE

Time domain full waveform inversion of seismic data for the East Sea, Korea, using a pseudo-Hessian method with source estimation

JIHO HA1 SUNGRYUL SHIN2 CHANGSOO SHIN3 WOOKEEN CHUNG4
Show Less
4 Department of Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea.,
3 Department of Energy Systems Engineering, Seoul National University, Seoul, South Korea.,
JSE 2015, 24(5), 419–437;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ha, J., Shin, S., Shin, C.S. and Chung, W., 2015. Time domain full waveform inversion of seismic data for the East Sea, Korea, using a pseudo-Hessian method with source estimation. Journal of Seismic Exploration, 24: 419-437. Waveform inversion is used to estimate subsurface velocity information using seismic datasets. To overcome the computational burden, the use of back-propagation algorithm and the pseudo-Hessian matrix are proposed. Many researchers using these algorithms have shown successful results with synthetic and field data tests. In particular, the computational efficiency of waveform inversion is improved by using a pseudo-Hessian with regularization using a virtual source vector. However, these theoretical concepts have been mainly applied to waveform inversion in the frequency or Laplace domains. We propose full waveform inversion using an estimated source wavelet with the pseudo-Hessian matrix and back-propagation in the time domain. We derive the virtual source vector for the first order hyperbolic equation based on 2D staggered-grid modeling. The updated gradient direction is obtained from both the virtual source and back-propagation wavefield vectors. To improve the availability for field data sets, we also perform the source estimation using deconvolution of the observed data based on the least-squares method. In a synthetic test with a modified Marmousi2 model, the inverted velocity model obtained by the proposed waveform inversion algorithm using estimated wavelets shows similarity to the true velocity. The estimated source wavelet shows good agreement with the true source wavelet. We also test the proposed waveform inversion with field data from the East Sea, Korea. The calculated traces with the estimated source wavelet and the inverted velocity model show direct and reflection events similar to those in the real seismic traces. This confirms that the proposed algorithm can be applied to field data.

Keywords
waveform inversion
pseudo-Hessian matrix
back-propagation algorithm
time domain
source estimation
seismic data
References
  1. Bae, H., Shin, C., Cha, Y., Choi, Y. and Min, D.-J., 2010. 2D acoustic-elastic coupled waveform
  2. inversion in the Laplace domain. Geophys. Prosp., 58: 997-1010.
  3. Bae, H.-S., Pyun, S., Shin, C., Marfurt, J.K. and Chung, W., 2012. Laplace-domain waveform
  4. inversion versus refraction-traveltime tomography. Geophys. J. Internat., 190: 595-606.
  5. Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore structures by
  6. 2D elastic frequency-domain full-waveform inversion. Geophysics, 74: WCC105-WCC118.
  7. Choi, Y. and Alkhalifah, T., 2011. Source-independent time-domain waveform inversion using
  8. convolved wavefield: Application to the encoded multisource waveform inversion.
  9. Geophysics, 76: R125- R1234.
  10. Claerbout, J.F., 1971. Toward a unified theory of reflector mapping. Geophysics, 36: 467-481.
  11. Fichtner, A., 2011. Full seismic waveform modeling and inversion. Springer Verlag, Heidelberg,
  12. Berlin.
  13. Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic
  14. waveforms: numerical results. Geophysics, 51: 1387-1403.
  15. Geller, R.J. and Hara, T., 1993. Two efficient algorithms for iterative linearized inversion of
  16. seismic waveform data. Geophys. J. Internat.,115: 699-710.
  17. Graves, R.W., 1996. Simulating seismic wave propagation in 3D elastic media, using staggered-grid
  18. finite differences. Bull. Seismol. Soc. Am., 86: 1091-1106.
  19. Ha, T., Chung, W. and Shin, C., 2009. Waveform inversion using a back-propagation algorithm
  20. and a Huber function norm. Geophysics, 74: R15-R24.
  21. Ha, T., Pyun, S. and Shin, C., 2006. Efficient electric resistivity inversion using adjoint state of
  22. mixed finite-element method for Poisson’s equation. J. Computat. Phys., 214: 171-186.
  23. Hampson, D.P., Russell, B.H. and Bankhead, B., 2005. Simultaneous inversion of pre-stack seismic
  24. data. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1633-1637.
  25. Jin, S. and Madariaga, R., 1993. Background velocity inversion by a genetic algorithm. Geophys.
  26. Res. Lett., 20: 93-96.
  27. Jin, S. and Madariaga, R., 1994. Non-linear velocity inversion by a two-step Monte Carlo method.
  28. Geophysics, 59: 577-590.
  29. Kim, Y., Min, D.-J. and Shin, C., 2011. Frequency-domain reverse time migration with source
  30. estimation. Geophysics, 76: S41-S49.
  31. Koo, N.-H., Shin, C., Min, D.-J., Park, K.-P. and Lee H.-Y., 2011. Source estimation and direct
  32. wave reconstruction in Laplace-domain waveform inversion for deep-sea seismic data.
  33. Geophys. J. Internat., 187: 861-870.
  34. Koren, Z., Mosegaard, K., Landa, E., Thore, P. and Tarantola, A., 1991. Monte Carlo estimation
  35. and resolution analysis of seismic background velocities. J. Geophys. Res. , 96: 20289-20299.
  36. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations: Conference
  37. on Inverse Scattering: Theory and Application. Expanded Abstr., Soc. Industr. Appl.
  38. Mathemat. Conf.: 206-220.
  39. Levander, A.R., 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53:
  40. 1425-1436.
  41. Métivier, L., Bretaudeau, F., Brossier, R., Operto, S., and Virieux, J., 2014. Full waveform
  42. inversion and the truncated newton-method: quantitative imaging of complex subsurface
  43. structures. Geophys. Prosp., 62: 1353-1375.
  44. TIME-DOMAIN FULL-WAVEFORM INVERSION 437
  45. Mosegaard, K. and Tarantola, A., 1995. Monte Carlo sampling of solutions to inverse problems.
  46. J. Geophys. Res., 100: 12431-12447.
  47. Pratt, P., 1999. Seismic waveform inversion in the frequency domain, part I: Theory and
  48. verification in a physical scale model. Geophysics, 64: 888-901.
  49. Pratt, R.G. and Shipp, R.M., 1999. Seismic waveform inversion in the frequency domain, Part 2:
  50. Fault delineation in sediments using cross hole data. Geophysics, 64: 902-914.
  51. Pratt, R.G., Shin, C. and Hicks, G.J., 1998. Gauss-Newton and full Newton methods in
  52. frequency-space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
  53. Sambridge, M. and Mosegaard, K., 2002. Monte Carlo methods in geophysical inverse problems.
  54. Rev. Geophys., 40: 1-29.
  55. Sheen, D.-H., Tuncay, K., Baag, C.-E. and Peter, J.0., 2006. Time domain Gauss-Newton seismic
  56. waveform inversion in elastic media. Geophys. J. Internat., 167: 1373-1384.
  57. Shin, C. and Cha, Y., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat. , 173:
  58. 922-931.
  59. Shin, C. and Min, D., 2006. Waveform inversion using a logarithm wavefield. Geophysics, 71:
  60. R31-R42.
  61. Shin, C., Jang, S. and Min, D.-J., 2001. Improved amplitude preservation for prestack depth
  62. migration by inverse scattering theory. Geophys. Prosp., 49: 592-606.
  63. Shin, C., Pyun, S. and Bednar, J.B., 2007. Comparison of waveform inversion, part 1: conventional
  64. wavefield vs. logarithmic wavefield. Geophys. Prosp., 55: 449-464.
  65. Shin, C., Yoon, K., Marfurt, K.J., Park, K., Yang, D., Lim, H.Y., Chung, S. and Shin, S., 2001.
  66. Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging
  67. and inversion. Geophysics, 66: 1856-1863.
  68. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
  69. 49: 1259-1266.
  70. Toxopeus, G., Thorbecke, J., Wapenaar, C.P.A., Petersen, S., Slob, E. and Fokkema, J.T., 2008.
  71. Simulating migrated and inverted seismic data by filtering a geologic model. Geophysics,
  72. 73: T1-T10.
  73. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference
  74. method. Geophysics, 51: 889-901.
  75. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics.
  76. Geophysics, 74: WCC1-WCC26.
  77. Zong, Z., Yin., X. and Wu, G., 2013. Multi-parameter nonlinear inversion with exact reflection
  78. coefficient equation. J. Appl. Geophys., 98: 21-32.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing