Time domain full waveform inversion of seismic data for the East Sea, Korea, using a pseudo-Hessian method with source estimation

Ha, J., Shin, S., Shin, C.S. and Chung, W., 2015. Time domain full waveform inversion of seismic data for the East Sea, Korea, using a pseudo-Hessian method with source estimation. Journal of Seismic Exploration, 24: 419-437. Waveform inversion is used to estimate subsurface velocity information using seismic datasets. To overcome the computational burden, the use of back-propagation algorithm and the pseudo-Hessian matrix are proposed. Many researchers using these algorithms have shown successful results with synthetic and field data tests. In particular, the computational efficiency of waveform inversion is improved by using a pseudo-Hessian with regularization using a virtual source vector. However, these theoretical concepts have been mainly applied to waveform inversion in the frequency or Laplace domains. We propose full waveform inversion using an estimated source wavelet with the pseudo-Hessian matrix and back-propagation in the time domain. We derive the virtual source vector for the first order hyperbolic equation based on 2D staggered-grid modeling. The updated gradient direction is obtained from both the virtual source and back-propagation wavefield vectors. To improve the availability for field data sets, we also perform the source estimation using deconvolution of the observed data based on the least-squares method. In a synthetic test with a modified Marmousi2 model, the inverted velocity model obtained by the proposed waveform inversion algorithm using estimated wavelets shows similarity to the true velocity. The estimated source wavelet shows good agreement with the true source wavelet. We also test the proposed waveform inversion with field data from the East Sea, Korea. The calculated traces with the estimated source wavelet and the inverted velocity model show direct and reflection events similar to those in the real seismic traces. This confirms that the proposed algorithm can be applied to field data.
- Bae, H., Shin, C., Cha, Y., Choi, Y. and Min, D.-J., 2010. 2D acoustic-elastic coupled waveform
- inversion in the Laplace domain. Geophys. Prosp., 58: 997-1010.
- Bae, H.-S., Pyun, S., Shin, C., Marfurt, J.K. and Chung, W., 2012. Laplace-domain waveform
- inversion versus refraction-traveltime tomography. Geophys. J. Internat., 190: 595-606.
- Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore structures by
- 2D elastic frequency-domain full-waveform inversion. Geophysics, 74: WCC105-WCC118.
- Choi, Y. and Alkhalifah, T., 2011. Source-independent time-domain waveform inversion using
- convolved wavefield: Application to the encoded multisource waveform inversion.
- Geophysics, 76: R125- R1234.
- Claerbout, J.F., 1971. Toward a unified theory of reflector mapping. Geophysics, 36: 467-481.
- Fichtner, A., 2011. Full seismic waveform modeling and inversion. Springer Verlag, Heidelberg,
- Berlin.
- Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic
- waveforms: numerical results. Geophysics, 51: 1387-1403.
- Geller, R.J. and Hara, T., 1993. Two efficient algorithms for iterative linearized inversion of
- seismic waveform data. Geophys. J. Internat.,115: 699-710.
- Graves, R.W., 1996. Simulating seismic wave propagation in 3D elastic media, using staggered-grid
- finite differences. Bull. Seismol. Soc. Am., 86: 1091-1106.
- Ha, T., Chung, W. and Shin, C., 2009. Waveform inversion using a back-propagation algorithm
- and a Huber function norm. Geophysics, 74: R15-R24.
- Ha, T., Pyun, S. and Shin, C., 2006. Efficient electric resistivity inversion using adjoint state of
- mixed finite-element method for Poisson’s equation. J. Computat. Phys., 214: 171-186.
- Hampson, D.P., Russell, B.H. and Bankhead, B., 2005. Simultaneous inversion of pre-stack seismic
- data. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1633-1637.
- Jin, S. and Madariaga, R., 1993. Background velocity inversion by a genetic algorithm. Geophys.
- Res. Lett., 20: 93-96.
- Jin, S. and Madariaga, R., 1994. Non-linear velocity inversion by a two-step Monte Carlo method.
- Geophysics, 59: 577-590.
- Kim, Y., Min, D.-J. and Shin, C., 2011. Frequency-domain reverse time migration with source
- estimation. Geophysics, 76: S41-S49.
- Koo, N.-H., Shin, C., Min, D.-J., Park, K.-P. and Lee H.-Y., 2011. Source estimation and direct
- wave reconstruction in Laplace-domain waveform inversion for deep-sea seismic data.
- Geophys. J. Internat., 187: 861-870.
- Koren, Z., Mosegaard, K., Landa, E., Thore, P. and Tarantola, A., 1991. Monte Carlo estimation
- and resolution analysis of seismic background velocities. J. Geophys. Res. , 96: 20289-20299.
- Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations: Conference
- on Inverse Scattering: Theory and Application. Expanded Abstr., Soc. Industr. Appl.
- Mathemat. Conf.: 206-220.
- Levander, A.R., 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53:
- 1425-1436.
- Métivier, L., Bretaudeau, F., Brossier, R., Operto, S., and Virieux, J., 2014. Full waveform
- inversion and the truncated newton-method: quantitative imaging of complex subsurface
- structures. Geophys. Prosp., 62: 1353-1375.
- TIME-DOMAIN FULL-WAVEFORM INVERSION 437
- Mosegaard, K. and Tarantola, A., 1995. Monte Carlo sampling of solutions to inverse problems.
- J. Geophys. Res., 100: 12431-12447.
- Pratt, P., 1999. Seismic waveform inversion in the frequency domain, part I: Theory and
- verification in a physical scale model. Geophysics, 64: 888-901.
- Pratt, R.G. and Shipp, R.M., 1999. Seismic waveform inversion in the frequency domain, Part 2:
- Fault delineation in sediments using cross hole data. Geophysics, 64: 902-914.
- Pratt, R.G., Shin, C. and Hicks, G.J., 1998. Gauss-Newton and full Newton methods in
- frequency-space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
- Sambridge, M. and Mosegaard, K., 2002. Monte Carlo methods in geophysical inverse problems.
- Rev. Geophys., 40: 1-29.
- Sheen, D.-H., Tuncay, K., Baag, C.-E. and Peter, J.0., 2006. Time domain Gauss-Newton seismic
- waveform inversion in elastic media. Geophys. J. Internat., 167: 1373-1384.
- Shin, C. and Cha, Y., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat. , 173:
- 922-931.
- Shin, C. and Min, D., 2006. Waveform inversion using a logarithm wavefield. Geophysics, 71:
- R31-R42.
- Shin, C., Jang, S. and Min, D.-J., 2001. Improved amplitude preservation for prestack depth
- migration by inverse scattering theory. Geophys. Prosp., 49: 592-606.
- Shin, C., Pyun, S. and Bednar, J.B., 2007. Comparison of waveform inversion, part 1: conventional
- wavefield vs. logarithmic wavefield. Geophys. Prosp., 55: 449-464.
- Shin, C., Yoon, K., Marfurt, K.J., Park, K., Yang, D., Lim, H.Y., Chung, S. and Shin, S., 2001.
- Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging
- and inversion. Geophysics, 66: 1856-1863.
- Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
- 49: 1259-1266.
- Toxopeus, G., Thorbecke, J., Wapenaar, C.P.A., Petersen, S., Slob, E. and Fokkema, J.T., 2008.
- Simulating migrated and inverted seismic data by filtering a geologic model. Geophysics,
- 73: T1-T10.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference
- method. Geophysics, 51: 889-901.
- Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics.
- Geophysics, 74: WCC1-WCC26.
- Zong, Z., Yin., X. and Wu, G., 2013. Multi-parameter nonlinear inversion with exact reflection
- coefficient equation. J. Appl. Geophys., 98: 21-32.