ARTICLE

qP wave numerical simulation in viscoelastic VTI media by one-way wave equation

XUE CHEN1 LIGUO HAN1 HELONG YANG1 SHUAI SHANG2
Show Less
1 Jilin University, 127 Dizhigong, 938 Ximinzhu St., Changchun, P.R. China.,
2 Tarim Oilfield Ltd. CNPC, 1201 Tuzhi Apt., Shishua Av., Korla, Xinjiang, P.R. China.,
JSE 2015, 24(5), 439–454;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, X., Han, L., Yang, H. and Shang, S., 2015. qP wave numerical simulation in viscoelastic VTI media by one-way wave equation. Journal of Seismic Exploration, 24: 439-454. Theoretical and practical studies show that the subsurface media has not only the anisotropic properties but also the anelastic properties. These properties are commonly denoted by the viscoelastic model. The conventional elastic isotropic seismic wavefield simulation could not provide sufficient foundations for the modern acquisition, processing and interpretation of the seismic data. In this article, we proposed a new qP wavefield modeling method in the viscoelastic VTI media by using the one-way wave equation. The one-way wave equation method can simulate the seismic reflection wavefield fast and accurately even in complex structure areas. The method has many advantages compared with the full-way wave equation method especially in the large-scale simulation problems, such as high calculating efficiency, low memory requirement and no interference of direct and multiple waves.

Keywords
viscoelasticity
anisotropy
one-way wave equation
numerical simulation
References
  1. Alkhalifah, T., 1998. Acoustic approximations for processing in transversely isotropic media.
  2. Geophysics, 63: 623-631.
  3. Alkhalifah, T., 2000. An acoustic wave equation for anisotropic media. Geophysics, 65: 1239-1250.
  4. Carcione, J.M., 1990. Wave propagation in anisotropic linear viscoelastic media: Theory and
  5. simulated wavefields. Geophys. J. Internat., 101: 739-750.
  6. Carcione, J.M., 2007. Wave Fields in Real Media: Wave propagation in anisotropic, anelastic,
  7. porous and electromagnetic media, 2nd Ed. Elsevier Science Publishers, Amsterdam.
  8. Carcione, J.M. and Cavallini, F., 1995. Attenuation and Quality Factor Surfaces in
  9. Anisotropic-viscoelastic Media. Mechanics of Materials, 19: 311-327.
  10. Gazdag, J., 1978. Wave equation with phase shift method. Geophysics, 43: 1342-1351.
  11. Gazdag, J. and Sguazzero, P., 1984. Migration of seismic data by phase shift plus interpolation.
  12. Geophysics, 49: 124-131.
  13. Guo, Z.Q., Liu, C., Yang, B.J., Liu, Y. and Wang, D., 2007. Seismic wavefields modeling and
  14. feature in viscoelastic anisotropic media. Progress in Geophysics (in Chinese), 22: 804-810.
  15. He, B.H., 2011. The study of numerical simulation of seismic wave in attenuation medium and
  16. extraction of absorption properties. M.Sc. thesis, China University of Petroleum, Qingdao.
  17. He, B.H. and Wu, G.C., 2010. Seismic attenuation modeling based on one-way wave equation (in
  18. Chinese). Chin. Geophys. Soc. Ann. Mtg.: 654-654.
  19. He, Z.H., Xiong, G.J. and Zhang, Y.X., 1998. Nonzero offset seismic forward modeling by one
  20. way acoustic wave equation. Expanded Abstr., 68th Ann. Internat. SEG Mtg., New Orleans:
  21. 1921-1924.
  22. Lamb, J. and Richter, J., 1966, Anisotropic acoustic attenuation with new measurements for quartz
  23. at room temperature. Proc. Roy. Soc. London, Ser. A, 293: 479-492.
  24. Li, G.H., Feng, J.G. and Zhu, J.M., 2011. Quasi-P wave forward modeling in viscoelastic VTI
  25. media in frequency-space domain. Chin. J. Geophys., 54: 200-207.
  26. Lu, J.M. and Wang, Y.G., 2009. The Principle of Seismic Exploration (in Chinese). China
  27. University of Petroleum Press, Dongying.
  28. Lucet, N. and Zinszner, B., 1992. Effects of heterogeneities and anisotropy on sonic and ultrasonic
  29. attenuation in rocks. Geophysics, 57: 1018-1026.
  30. Ristow, D. and Riihl, T., 1994. Fourier finite-difference migration. Geophysics, 59: 1882-1893.
  31. Stoffa, P.L., Fokkema, J.T. and de Luna Freire, R.M. and Kessinger, W.P., 1990. Split-step
  32. Fourier migration. Geophysics, 55: 410-421.
  33. Wu, G.C. and Liang, K., 2005. Quasi P-wave forward modeling in frequency space domain in VTI
  34. media. Oil Geophys. Prosp. (in Chinese), 40: 535-545.
  35. Wu, G.C., 2006. Seismic wave propagation and imaging in anisotropy media (in Chinese). China
  36. Univ. of Petroleum Press, Dongying.
  37. Wu, G.C. and Liang, K., 2007. High precision finite difference operators for qP wave equation in
  38. VTI media. Progr. in Geophys. (in Chinese), 22: 896-904.
  39. Wu, R.S., 1994, Wide-angle elastic wave one-way propagation in heterogeneous media and an
  40. elastic wave complex-screen method. J. Geophys. Res., 99(B1): 751-766.
  41. 454 CHEN, HAN, YANG & SHANG
  42. Wu, R.S. and Jin, S., 1997. Windowed GSP (generalized screen propagators) migration applied to
  43. SEG-EAEG salt model data. Expanded Abstr., 67th Ann. Internat. SEG Mtg., Dallas:
  44. 1746-1749.
  45. Xiong, G.J., He, Z.H., Huang, D.J., Zhang, Y.X., Jiang, S.R. and Yan, P., 1998. Improved
  46. positioning principle of forward modeling. Oil Geophys. Prosp., 33: 742-748.
  47. Xiong, G.J., He, Z.H., Huang, D.J., Zhang, Y.X., Jiang, S.R. and Zhuo, B.H., 1999. Geophone
  48. downward principle of CSP record forward simulation. Geophys. Prosp. for Petrol., 38(2):
  49. 43-49.
  50. Zhu, Y. and Tsvankin, I., 2006. Plane-wave propagation in attenuative transversely isotropic media.
  51. Geophysics, 71(2): T17-T30.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing