Time-domain formulation of a perfectly matched layer for the second-order elastic wave equation with VTI media

Lee, J. and Shin, C.S., 2015. Time-domain formulation of a perfectly matched layer for the second-order elastic wave equation with VTI media. Journal of Seismic Exploration, 24: 231-257. In this study, we introduce the unsplit Perfectly Matched Layer (PML) for the 2D and 3D second-order elastic wave equations with isotropic and transversely isotropic vertical axis of symmetry (VTI) media in the time domain. The introduced PML formulations are successfully applied to practical applications in terms of efficiency and stability. The PML formulations require less than or an equal number of auxiliary variables than other formulations, thereby decreasing the computational power necessary to calculate the solution in the PML zone. Derived directly from the second-order wave form, the PML formulation demonstrates an improved stability compared to first-order PMLs or second-order PMLs that are derived from first-order systems. Numerical examples demonstrate that the bulk waves and strong surface waves are perfectly damped out without introducing instability for an isotropic material in both 2D and 3D. The derived formulation also provides effective absorption with strong VTI materials, including zinc and apatite, that cause instability problems in other PML formulations.
- Abarbanel, S. and Gottlieb, D., 1997. A mathematical analysis of the PML method. J. Computat.
- Phys., 134: 357-363.
- Abarbanel, S., Gottlieb, D. and Hesthaven, J.S., 2002. Long time behavior of the perfectly matched
- layer equations in computational electromagnetics. J. Scientif. Comput., 17: 405-422.
- Appelé, D. and Petersson, N.A., 2009. A stable finite difference method for the elastic wave
- equation on complex geometries with free surfaces. Communic. Computat. Phys. , 5: 84-107.
- Assi, H. and Cobbold, R.S., 2013. Perfectly matched layer for second-order time-domain elastic
- wave equation: formulation and stability. arXiv preprint arXiv: 1312.3722.
- Bécache, E., Fauqueux, S. and Joly, P., 2003. Stability of perfectly matched layers, group velocities
- and anisotropic waves. J. Computat. Phys., 188: 399-433.
- PML FOR SECOND-ORDER ELASTIC EQUATION 255
- Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic waves. J.
- Computat. Phys., 114: 185-200.
- Carcione, J.M., Kosloff, D. and Kosloff, R., 1988. Wave-propagation simulation in an elastic
- anisotropic (transversely isotropic) solid. Quart. J. Mechan. Appl. Mathemat., 41: 319-346.
- Chang, W.F. and McMechan, G.A., 1987. Elastic reverse-time migration. Geophysics, 52:
- 1365-1375.
- Chew, W.C. and Liu, Q.H., 1996. Perfectly matched layers for elastodynamics: a new absorbing
- boundary condition. J. Computat. Acoust., 4: 341-359.
- Chew, W.C. and Weedon, W.H., 1994. A 3D perfectly matched medium from modified Maxwell’s
- equations with stretched coordinates. Microw. Opt. Technol. Lett., 7: 599-604.
- Collino, F., and Tsogka, C., 2001. Application of the perfectly matched absorbing layer model to
- the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66:
- 294-307.
- Crase, E., Pica, A., Noble, M., McDonald, J. and Tarantola, A., 1990. Robust elastic nonlinear
- waveform inversion: Application to real data. Geophysics, 55: 527-538.
- De Basabe, J.D., Sen, M.K. and Wheeler, M.F., 2008. The interior penalty discontinuous Galerkin
- method for elastic wave propagation: grid dispersion. Geophys. J. Internat., 175: 83-93.
- Duru, K., and Kreiss, G., 2012. A well-posed and discretely stable perfectly matched layer for
- elastic wave equations in second order formulation. Communic. Computat. Phys., 11: 1643.
- Grote, M.J. and Sim, I., 2010. Efficient PML for the wave equation, arXiv preprint arXiv:
- 0319.
- Hastings, F.D., Schneider, J.B. and Broschat, S.L., 1996. Application of the perfectly matched
- layer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am.,
- 100: 3061-3069.
- Kim, Y., Min, D.J. and Shin, C., 2011. Frequency-domain reverse-time migration with source
- estimation. Geophysics, 76: S41-S49.
- Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched layer improved
- at grazing incidence for the seismic wave equation. Geophysics, 72: SM155-SM167.
- Komatitsch, D. and Vilotte, J.P., 1998. The spectral element method: an efficient tool to simulate
- the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88:
- 368-392.
- Komatitsch, D. and Tromp, J., 2003. A perfectly matched layer absorbing boundary condition for
- the second-order seismic wave equation. Geophys. J. Internat., 154: 146-153.
- Kosloff, D., Queiroz Filho, A., Tessmer, E. and Behle, A., 1989. Numerical solution of the
- acoustic and elastic wave equations by a new rapid expansion method. Geophys. Prosp., 37:
- 383-394.
- Ledbetter, H.M., 1977. Elastic properties of zinc: A compilation and a review. J. Phys. Chem. Ref.
- Data, 6: 1181-1203.
- Li, Y. and Matar, O.B., 2010. Convolutional perfectly matched layer for elastic second-order wave
- equation. J. Acoust. Soc. Am., 127: 1318-1327.
- Liu, Q.H. and Tao, J., 1997. The perfectly matched layer for acoustic waves in absorptive media.
- J. Acoust. Soc. Am., 102: 2072-2082.
- Marfurt, K.J., 1984. Accuracy of finite-difference and finite-element modeling of the scalar and
- elastic wave equations. Geophysics, 49: 533-549.
- Meza-Fajardo, K.C. and Papageorgiou, A.S., 2008. A nonconvolutional, split-field, perfectly
- matched layer for wave propagation in isotropic and anisotropic elastic media: Stability
- analysis. Bull. Seismol. Soc. Am., 98: 1811-1836.
- Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics,
- 52: 1211-1228.
- Pratt, R.G., Shin, C. and Hick, G.J., 1998. Gauss-Newton and full Newton methods in frequency-
- space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
- Qi, Q. and Geers, T.L., 1998. Evaluation of the perfectly matched layer for computational
- acoustics. J. Computat. Phys., 139: 166-183.
- 256 LEE & SHIN
- Shin, C. and Cha, Y.H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat.,
- 173: 922-931.
- Shin, C. and Cha, Y.H., 2009. Waveform inversion in the Laplace-Fourier domain. Geophys. J.
- Internat., 177: 1067-1079.
- Sun, R. and McMechan, G.A., 2001. Scalar reverse-time depth migration of prestack elastic seismic
- data. Geophysics, 66: 1519-1527.
- Tarantola, A., 1986. A strategy for nonlinear elastic inversion of seismic reflection data.
- Geophysics, 51: 1893-1903.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Yan, J. and Sava, P., 2008. Isotropic angle-domain elastic reverse-time migration. Geophysics, 73:
- $229-S239.