ARTICLE

Elastodynamic Green’s tensor in vertically transversely isotropic media

ZHAO LI EVGENY M. CHESNOKOV
Show Less
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77004, U.S.A.,
JSE 2015, 24(3), 259–280;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Li, Z. and Chesnokov, E.M., 2015. Elastodynamic Green’s tensor in vertically transversely isotropic media. Journal of Seismic Exploration, 24: 259-280. The elastodynamic Green’s tensor in a vertically transversely isotropic (VTI) medium is presented explicitly as an inverse Hankel transform. The asymptotic solution is found by the stationary phase approximation. An approximate formula in weak VTI media is derived based on a novel way of expanding the vertical slowness linearly to anisotropic parameters in which case the stationary-phase points can be found analytically. The approximate solution will become exact when the medium degenerates into an elliptical VTI rather than an isotropic medium.

Keywords
anisotropy
Green’s tensor
asymptotic
VTI
analytic solution
References
  1. Ben-Menahem, A. and Sena, A.G., 1990. Seismic source theory in stratified anisotropic media. J.
  2. Geophys. Res., 95: 15395-15427. doi: 10.1029/JB095iB10p15395.
  3. Dellinger, J.A., 1991. Anisotropic Seismic Wave Propagation. Ph.D. Thesis, Department of
  4. Geophysics, Stanford University, Stanford, CA.
  5. Fuchs, K. and Miiller, G., 1971. Computation of synthetic seismograms with the reflectivity method
  6. and comparison with observations. Geophys. J., 23: 417.
  7. doi: 10.1111/j.1365-246X.1971.tb01834.x.
  8. Gajewski, D., 1993. Radiation from point sources in general anisotropic media. Geophys. J.
  9. Internat., 113: 299-317. doi: 10.1111/j.1365-246X.1993.tb00889.x.
  10. Gridin, D., 2000. Far-field asymptotics of the Green tensor for a transversely isotropic solid. Proc.
  11. Roy. Soc., A 456: 571-591. doi: 10.1098/rspa.2001.0844.
  12. Hung, S. and Forsyth, D.W., 1998. Modelling anisotropic wave propagation in oceanic
  13. inhomogeneous structures using the parallel multidomain pseudo-spectral method. Geophys.
  14. J. Internat., 133: 726-740. doi: 10.1046/j.1365-246X.1998.00526.x.
  15. Kennett, B.L.N., 1983. Seismic Wave Propagation in Stratified Media. Cambridge University Press,
  16. Cambridge, UK.
  17. Miiller, G., 1985. The reflectivity method: a tutorial. J. Geophys., 58: 153-174.
  18. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966. doi:10.1190/1.1442051.
  19. Thomsen, L. and Dellinger, J., 2003. On shear-wave triplication in polar-anisotropic media. J. Appl.
  20. Geophys., 54: 289-296. doi:10.1016/j.jappgeo.2003.08.008.
  21. Tsvankin, I.D. and Chesnokov, E.M., 1990. Synthesis of body wave seismograms from point
  22. sources in anisotropic media. J. Geophys. Res., 95 (B7): 11317-11331.
  23. doi: 10. 1029/JB095iB07p11317.
  24. Tsvankin, I. and Thomsen, L., 1994. Nonhyperbolic reflection moveout in anisotropic media.
  25. Geophysics, 59: 1290-1304. doi:10:1190/1.1443686.
  26. Tsvankin, I., 1995. Body-wave radiation patterns and AVO in transversely isotropic media.
  27. Geophysics, 60: 1409-1425. doi:10.1190/1.1443876.
  28. Tsvankin, I., 2001. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media.
  29. Elsevier Science Publishers, Oxford.
  30. Vavrycuk, V., and Yomogida, K., 1996. SH-wave Green tensor for homogeneous transversely
  31. isotropic media by higher-order approximations in asymptotic ray theory. Wave Motion, 23:
  32. 83-93.
  33. GREEN’S TENSOR IN VTI MEDIA 275
  34. Vavrycuk, V., 1997. Elastodynamic and elastostatic Green tensors for homogeneous weak
  35. transversely isotropic media. Geophys. J. Int., 130: 786-800.
  36. doi: 10.1111/j.1365-246X. 1997.tb01873.x.
  37. Vavrycuk, V., 2002. Asymptotic elastodynamic Green function in the kiss singularity in
  38. homogeneous anisotropic solids. Stud. Geophys. Geod., 46: 249-266.
  39. doi: 0.1023/A:1019854020095.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing